10,619 results match your criteria: "Beihang University.[Affiliation]"

Article Synopsis
  • Researchers aim to create artificial neural networks that match the performance of biological networks, focusing on accuracy, efficiency, and low latency.
  • They developed a new spiking neural network (SNN) using concepts from neuroscience, including self-inhibiting autapse and neuron diversity, to improve learning and memory capabilities.
  • The new SNN model demonstrated superior performance, achieving higher accuracy, energy efficiency, and reduced latency in various AI tasks, and successfully identified rare cell types linked to severe brain diseases.
View Article and Find Full Text PDF

Radar-Terahertz-Infrared Compatible Stealth Coaxial Silver Nanowire@Carbon Nano-cable Aerogel.

Angew Chem Int Ed Engl

January 2025

Beihang University, School of Chemistry, chemsitry, No 37 Xueyuan Rd, 100191, Beijing, CHINA.

Achieving multi-spectrum compatible stealth in radar-terahertz-infrared bands with robust performance has great prospects for both military and civilian applications. However, the progress of materials encounters substantial challenges due to the significant variability in frequency coupling properties across different electromagnetic wave bands. Here, this work presents the design of a multi-scale structure and fabricates a lightweight aerogel (silver nanowire@carbon, AgNW@C) consisting of a regular coaxial nano-cable, with silver nanowire as the core and amorphous-graphitized hybrid carbon as the outer-layer.

View Article and Find Full Text PDF

Extended homogeneous field correction method based on oblique projection in OPM-MEG.

Neuroimage

January 2025

Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China. Electronic address:

Article Synopsis
  • OPM-MEG is a new non-invasive imaging technique that improves sensor flexibility but requires better noise suppression due to environmental factors.
  • Existing methods like homogeneous field correction (HFC) and spatiotemporal extended HFC (teHFC) have limitations in dealing with complex noise.
  • The proposed oblique projection method (opHFC) enhances noise suppression by accommodating non-orthogonal signal and noise subspaces, leading to improved signal quality in OPM-MEG applications.
View Article and Find Full Text PDF

Ciliary muscle traction during accommodation is able to induce optic nerve head deformation.

Eye (Lond)

January 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.

Objectives: To use finite element (FE) modeling and in vivo optical coherence tomography (OCT) imaging to explore the effect of ciliary muscle traction on optic nerve head (ONH) deformation during accommodation.

Methods: We developed a FE model to mimic the ciliary muscle traction during accommodation, and varied the stiffness of the sclera, choroid, Bruch's membrane (BM), prelaminar neural tissue and lamina cribrosa (LC) to assess their effects on accommodation-induced ONH strains. To validate the FE model, OCT images of the right eyes' ONHs from 20 subjects (25 ± 1.

View Article and Find Full Text PDF

This study explores the risk management challenges associated with safety-critical systems required to execute specific missions. The working component experiences degradation governed by a continuous-time discrete-state Markov chain, whose failure leads to an immediate system breakdown and safety losses. To enhance system survivability, a limited number of identical spares are available for online replacement throughout the mission.

View Article and Find Full Text PDF

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF

Massive Dirac fermions, which are essential for realizing novel topological phenomena, are expected to be generated from massless Dirac fermions by breaking the related symmetry, such as time-reversal symmetry in topological insulators or crystal symmetry in topological crystalline insulators. Here, we report scanning tunneling microscopy and angle-resolved photoemission spectroscopy studies of α-Bi_{4}I_{4}, which reveals the realization of massive Dirac fermions in the (100) surface states without breaking the time-reversal symmetry. Combined with first-principles calculations, our experimental results indicate that the spontaneous symmetry breaking engenders two nondegenerate edge states at the opposite sides of monolayer Bi_{4}I_{4} after the structural phase transition, imparting mass to the Dirac fermions after taking the interlayer coupling into account.

View Article and Find Full Text PDF

R(3780) Resonance Interpreted as the 1^{3}D_{1}-Wave Dominant State of Charmonium from Precise Measurements of the Cross Section of e^{+}e^{-}→Hadrons.

Phys Rev Lett

December 2024

State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of China.

We report the precise measurements of the cross section of e^{+}e^{-}→hadrons at center-of-mass energies from 3.645 to 3.871 GeV.

View Article and Find Full Text PDF

Regulate PD-L1's membrane orientation thermodynamics with hydrophobic nanoparticles.

Biomater Sci

January 2025

Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.

Tumor cells can escape from immune killing by binding their programmed death ligand-1 (PD-L1) to the programmed cell death protein 1 (PD-1) of T cells. These immune checkpoint proteins (PD-L1/PD-1) have become very important drug targets, since blocking PD-L1 or PD-1 can recover the killing capability of T cells against tumor cells. Instead of targeting the binding interface between PD-L1 and PD-1, we explored the possibility of regulating the membrane orientation thermodynamics of PD-L1 with ligand-modified ultra-small hydrophobic nanoparticles (NPs) using μs-scale coarse-grained molecular dynamics (MD) simulations in this work.

View Article and Find Full Text PDF

Diagnosing lung cancer from indeterminate pulmonary nodules (IPLs) remains challenging. In this multi-institutional study involving 2032 participants with IPLs, we integrate the clinical, radiomic with circulating cell-free DNA fragmentomic features in 5-methylcytosine (5mC)-enriched regions to establish a multiomics model (clinic-RadmC) for predicting the malignancy risk of IPLs. The clinic-RadmC yields an area-under-the-curve (AUC) of 0.

View Article and Find Full Text PDF

Complex-valued neural networks process both amplitude and phase information, in contrast to conventional artificial neural networks, achieving additive capabilities in recognizing phase-sensitive data inherent in wave-related phenomena. The ever-increasing data capacity and network scale place substantial demands on underlying computing hardware. In parallel with the successes and extensive efforts made in electronics, optical neuromorphic hardware is promising to achieve ultra-high computing performances due to its inherent analog architecture and wide bandwidth.

View Article and Find Full Text PDF

Compositionally-graded ferroelectric thin films by solution epitaxy produce excellent dielectric stability.

Nat Commun

January 2025

State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

The composition in ferroelectric oxide films is decisive for optimizing properties and device performances. Controlling a composition distribution in these films by a facile approach is thus highly desired. In this work, we report a solution epitaxy of PbZrTiO films with a continuous gradient of Zr concentration, realized by a competitive growth at ~220 °C.

View Article and Find Full Text PDF

A flexible catheter-based sensor array for upper airway soft tissues pressure monitoring.

Nat Commun

January 2025

The Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, PR China.

Obstructive sleep apnea is a globally prevalent concern with significant health impacts, especially when coupled with comorbidities. Accurate detection and localization of airway obstructions are crucial for effective diagnosis and treatment, which remains a challenge for traditional sleep monitoring methods. Here, we report a catheter-based flexible pressure sensor array that continuously monitors soft tissue pressure in the upper airway and facilitates at the millimeter level.

View Article and Find Full Text PDF

Realizing high power factor and thermoelectric performance in band engineered AgSbTe.

Nat Commun

January 2025

Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.

Article Synopsis
  • AgSbTe is a promising p-type thermoelectric material that has seen improvements focused on reducing lattice thermal conductivity, but its low power factor limits device performance.
  • Recent research shows that doping AgSbTe with Sn creates a new impurity band, enhancing electrical properties and achieving a record-high power factor of 27 μWcmK and a peak thermoelectric figure of merit zT of 2.5 at 673 K.
  • The improved performance is due to increased hole concentration and reduced bipolar conductivity, resulting in an efficient thermoelectric device with energy conversion efficiencies of 12.1% and a power density of 1.13 Wcm.
View Article and Find Full Text PDF

Triboelectric Nanogenerator-Based Self-Powered Urinary Protein Detection Utilizing Triboelectric Material with Colorimetric Function.

ACS Nano

January 2025

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.

Chronic kidney disease (CKD) has a high incidence rate, and if not detected and treated in a timely manner, it poses a risk of progressing to renal failure and even uremia. Performing home monitoring of urinary protein, which is a recognized indicator of CKD, is considered an effective means of achieving early warning for CKD. Although the existing urinary protein test strips for home self-testing are cost-effective and simple, they suffer from drawbacks such as susceptibility to contamination and lack of quantitative detection capability.

View Article and Find Full Text PDF

Implantation of a mesh loaded with mesenchymal stem cells (MSCs) is a common approach for the treatment of pelvic organ prolapse (POP). The mesh provides effective support to pelvic floor, enhancing muscle contraction of pelvic organs while reducing inflammation. In this study, a fully degradable mesh is designed for the treatment of POP, utilizing MSCs stimulated by a galvanic battery-powered electric field.

View Article and Find Full Text PDF

Introduction: In-stent restenosis remains a significant challenge in coronary artery interventions. This study aims to explore the relationship between exercise intensity and stent design, focusing on the coupled response of the stent structure and hemodynamics at different exercise intensities.

Methods: A coupled balloon-stent-plaque-artery model and a fluid domain model reflecting structural deformation were developed to investigate the interaction between coronary stents and stenotic vessels, as well as their impact on hemodynamics.

View Article and Find Full Text PDF

Multi-resolution analysis for high-fidelity deconvolution microscopy.

Light Sci Appl

January 2025

School of Physics, Beihang University, 100191, Beijing, China.

A fidelity-ensured multi-resolution analysis deconvolution algorithm significantly enhances fluorescence microscopy's resolution and noise control, enabling more accurate and detailed imaging for advanced biological research applications.

View Article and Find Full Text PDF

High-throughput Design of Single-atom Catalysts with Nonplanar and Triple Pyrrole-N Coordination for Highly Efficient HO Electrosynthesis.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China.

Single-atom catalysts (SACs) with nonplanar configurations possess unique capabilities for tailoring the oxygen reduction reaction (ORR) catalytic performance compared with the ones with planar configurations, owing to the additional orbital rearrangement arising from the asymmetric coordination atoms. However, the systematic investigation of these nonplanar SACs has long been hindered by the difficulty in screening feasible nonplanar configurations and precisely controlling the coordination structures. Herein, we demonstrate a combined high-throughput screening and experimental verification of nonplanar SACs (ppy-MN) with metal atoms triple-coordinated by pyrrole-N, for highly active and selective 2e ORR electrocatalysis.

View Article and Find Full Text PDF

Friction stir processing (FSP) is successfully employed to alleviate their hook defects of friction stir lap welding (FSLW) of aluminum alloys. The mechanical properties and microstructural characteristics are compared and analyzed between the FSLW&FSP joint fabricated by FSLW and FSP and the FSLW joint. The microstructural analysis shows that the hook defect zone at the advancing side of the FSLW joint is changed into the overlap zone (OZ) of the FSLW&FSP joint due to microstructure reconstruction caused by performing the FSP.

View Article and Find Full Text PDF

The impact of ciliary length on the mechanical response of osteocytes to fluid shear stress.

Nitric Oxide

December 2024

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China. Electronic address:

Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.

View Article and Find Full Text PDF

Analyzing the effect of surgical and corneal parameters on the postoperative refractive outcomes of SMILE in myopic eyes based on machine learning.

Am J Ophthalmol

December 2024

Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; School of Medicine, Nankai University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Ophthalmology Hospital, Tianjin, China; Nankai Eye Institute, Nankai University, Tianjin, China. Electronic address:

Purpose: To analyze the effect of individual parameters on the postoperative refractive outcomes of small incision lenticule extraction in myopic eyes using machine learning methods.

Design: Retrospective Clinical Cohort Study METHODS: We included 477 patients (922 eyes) of small incision lenticule extraction at Tianjin Ophthalmology Hospital and divided the patients into two groups to analyzed the factors affecting postoperative refractive outcomes based on the label of postoperative spherical equivalent (SE) ≤ -0.50D.

View Article and Find Full Text PDF

Distributed coordinated motion control of multiple UAVs oriented to optimization of air-ground relay network.

Sci Rep

December 2024

School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.

A novel adaptive model-based motion control method for multi-UAV communication relay is proposed, which aims at improving the networks connectivity and the communications performance among a fleet of ground unmanned vehicles. The method addresses the challenge of relay UAVs motion control through joint consideration with unknown multi-user mobility, environmental effects on channel characteristics, unavailable angle-of-arrival data of received signals, and coordination among multiple UAVs. The method consists of two parts: (1) Network connectivity is constructed and communication performance index is defined using the minimum spanning tree in graph theory, which considers both the communication link between ground node and UAV, and the communication link between ground nodes.

View Article and Find Full Text PDF

Spatially selective imaging (SSI) involves sampling a group of pixels from different positions on an encoded object to display a decoded image. Here, SSI is achieved by using off-axis cylindrical Fresnel lens arrays to decode multiple images from an encoded print of structural color pixels. Each image is optically retrieved by separately placing different "keys" (arrays of lenses in different pseudorandom configurations) over the same encoded print, and then each image is digitally reconstructed for visualization.

View Article and Find Full Text PDF

Research on geographic and socioeconomic disparities of NO attributed mortality burden is limited. This study aims to quantify the geographic and socioeconomic differences in the association between long-term exposure to NO and mortality burden in China. We estimated the all-cause mortality burden of adults over 16 years old attributable to NO exposure above 10 µg/m for 231 Chinese cities from 2015 to 2019, and geographic and socioeconomic differences .

View Article and Find Full Text PDF