10,615 results match your criteria: "Beihang University.[Affiliation]"

Immune Dysregulation and Cellular Composition in Lichen Sclerosus Revealed by Integrative Epigenetic Analysis with Cell Type Deconvolution.

J Inflamm Res

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Engineering Medicine, Beihang University, Beijing, 100191, People's Republic of China.

Background: Lichen sclerosus (LS) is a chronic inflammatory disease affecting skin and mucosal tissues, particularly external genitalia, with a risk of cancer. Its etiology is unknown, possibly involving immune dysregulation and inflammation.

Methods: Study used DNA methylation (DNAme) and single-cell RNA sequencing (scRNA-seq) to compare LS with normal skin.

View Article and Find Full Text PDF

A Novel Dynamic Growth Rod Inducing Spinal Growth Modulation for the Correction of Spinal Deformities.

JOR Spine

March 2025

Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.

Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.

View Article and Find Full Text PDF

The manufacturing of thin films through selective laser sintering of micro/nanoparticles is an emerging technology that has been developing rapidly over the last two decades owing to its digitization, efficiency, and good adaptability to various materials. However, high-quality laser sintering of different materials remains a challenge: ceramic particles are difficult to be sintered due to low absorbance; metallic particles are prone to oxidation; semiconductor particles are difficult to process for performance enhancement due to high stress. In this work, a new approach is proposed that employs an additional Indium Tin Oxide (ITO) sacrificial layer to assist laser sintering of different functional materials, which detaches after sintering without contaminating the target material.

View Article and Find Full Text PDF

With the projected expansion of the general aviation sector and recent breakthroughs in sustainable aviation fuels (SAF), accurately measuring emissions from novel aircraft engines powered by SAF is paramount for evaluating the role of aviation industry in emission reduction trends and environmental consequences. Current SAF research primarily centers on low blend ratios, neglecting data on 100% SAF. This study bridges this gap by experimentally determining emissions indices for gaseous pollutants (CO, CO, HC, NOx), total particulate matter (PM) counts and sizes, and non-volatile particulate matter (nvPM) number and mass concentrations from a heavy-fuel aircraft piston engines (HF-APE) using hydroprocessed esters and fatty acids-derived SAF (HEFA-SAF), adhering to airworthiness-standard sampling and measurement protocols.

View Article and Find Full Text PDF

Focal volume reduction in transcranial focused ultrasound using spherical wave expansions.

Ultrasonics

January 2025

School of Biological Science and Medical Engineering, Beihang University, Beijing, China. Electronic address:

Transcranial focused ultrasound (tFUS) has been gaining increased attention as a non-invasive modality for treating brain diseases. However, accurately focusing on brain structures remains a challenge as the ultrasound is severely distorted by the presence of the skull. In this article, we propose a promising distortion correction method based on spherical wave expansions.

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Glutathione serves as a common biomarkers in tumor diagnosis and treatment. The levels of its intracellular concentration permit detailed investigation of the tumor microenvironment. However, low polarization and weak Raman scattering cross-section make direct and indirect Raman detection challenging.

View Article and Find Full Text PDF

We introduce a circle rolling method (CRM) for boundary extraction from 2D point clouds. The core idea is to create a circle that performs pure rolling on the perimeter of the point cloud to obtain the boundary. For a 3D point cloud, a plane adsorbs points on both sides to create a 2D point cloud, and the CRM is used to extract the boundary points and map them back into space to obtain 3D boundary points.

View Article and Find Full Text PDF

Influence of Different Spot Pattern Lasers on Cleaning Effect of TC4 Titanium Alloy.

Materials (Basel)

December 2024

Key Laboratory High Efficiency & Clean Mech Manufacture, School of Mechanical Engineering, Shandong University, Ministry of Education, 17923 Jingshi Rd., Jinan 250061, China.

This study employed different spot pattern lasers to clean the oxide film on the surface of a TC4 titanium alloy. The variation in temperature field and ablation depth during the laser cleaning process was simulated by establishing a finite element model. The effects of various laser processing parameters on the micromorphology, elemental composition, and surface roughness of the TC4 titanium alloy were analyzed.

View Article and Find Full Text PDF

The galvanic corrosion and electrical insulation between TC4 Ti-alloy and 304 stainless steel coupled in pipe joints were investigated using the finite element method. The results obtained from polarization were applied as boundary conditions. The simulation incorporated secondary current distribution with chemical species transport and laminar flow.

View Article and Find Full Text PDF

Unravelling the complex influence of dissolved organic matter on microbial diversity in a salinized lake.

Environ Res

January 2025

Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.

Ecosystems in cold and arid regions, such as Dai Lake - a typical inland, salinized lake in the semi-arid region of northern China - face severe environmental challenges, including salinization and biodiversity loss. This study investigates the chemical composition of dissolved organic matter (DOM) and the structure of microbial communities in lake water and sediments, offering novel insights into the ecosystem's dynamics. In winter, DOM in the lake water is primarily derived from decaying plant and animal matter, while sediment DOM is predominantly associated with microbial activity.

View Article and Find Full Text PDF

Dobutamine-induced alterations in internal carotid artery blood flow and cerebral blood flow in healthy adults.

Brain Res Bull

January 2025

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China; Precision and Intelligence Medical Imaging Lab, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China. Electronic address:

Purpose: Dobutamine, a sympathomimetic agent, is widely used clinically, influencing cardiac output, heart rate (HR), and blood pressure (BP), which may impact cerebral blood flow (CBF), critical for brain metabolism. However, the effects of dobutamine on CBF and internal carotid artery (ICA) blood flow remain unclear, with contradictory reported in both clinical and animal studies. It is necessary to investigate the effects of dobutamine on cervical and cerebral hemodynamics.

View Article and Find Full Text PDF

China is concurrently facing the dual challenges of air pollution and climate change. Here, we established a coupled modeling framework that integrated a chemical transport model with a health impact assessment model and the human capital method, to quantify the contributions of 150 emission sources (five sectors in 30 provinces) to the CO emissions, and the mortality burdens attributed to O and PM. We found that, in 2019, the estimated premature deaths in China attributed to PM and O pollution were 1,499,073 and 143,420, respectively.

View Article and Find Full Text PDF

Harmonized technical standard test methods for quality evaluation of medical fluorescence endoscopic imaging systems.

Vis Comput Ind Biomed Art

January 2025

School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.

Fluorescence endoscopy technology utilizes a light source of a specific wavelength to excite the fluorescence signals of biological tissues. This capability is extremely valuable for the early detection and precise diagnosis of pathological changes. Identifying a suitable experimental approach and metric for objectively and quantitatively assessing the imaging quality of fluorescence endoscopy is imperative to enhance the image evaluation criteria of fluorescence imaging technology.

View Article and Find Full Text PDF

The exposure to extreme heat at workplaces poses substantial threat to human effort and manual labour. This becomes more prominent due to the global dispersion of labour-intensive production activities via trade. We combine a climate model with an input-output model to quantify the risks associated with trade-related occupational extreme heat exposure.

View Article and Find Full Text PDF

Realizing an Energy-Dense Potassium Metal Battery at -40 °C via an Integrated Anode-Free and Dual-Ion Strategy.

J Am Chem Soc

January 2025

School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.

Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).

View Article and Find Full Text PDF

Dynamic Peptide Nanoframework-Guided Protein Coassembly: Advancing Adhesion Performance with Hierarchical Structures.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.

Hierarchical structures are essential in natural adhesion systems. Replicating these in synthetic adhesives is challenging due to intricate molecular mechanisms and multiscale processes. Here, we report three phosphorylated peptides featuring a hydrophobic self-assembly motif linked to a hydrophilic phosphorylated sequence (pSGSS), forming peptide fibril nanoframeworks.

View Article and Find Full Text PDF

Quadruple-band synglisis enables high thermoelectric efficiency in earth-abundant tin sulfide crystals.

Science

January 2025

Center for Bioinspired Science and Technology, Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.

Thermoelectrics have been limited by the scarcity of their constituent elements, especially telluride. The earth-abundant, wide-bandgap ( ≈ 46 ) tin sulfide (SnS) has shown promising performance in its crystal form. We improved the thermoelectric efficiency in SnS crystals by promoting the convergence of energy and momentum of four valance bands, termed quadruple-band synglisis.

View Article and Find Full Text PDF

In the field of Japanese-Chinese translation linguistics, the issue of correctly translating attributive clauses has persistently proven to be challenging. Present-day machine translation tools often fail to accurately translate attributive clauses from Japanese to Chinese. In light of this, this paper investigates the linguistic problem underlying such difficulties, namely how does the semantic role of the modified noun affect the selection of translation patterns for attributive clauses, from a linguistic perspective.

View Article and Find Full Text PDF

In sodium-ion batteries, the layered transition metal oxides used as cathode often experience interlayer sliding of interlayer spacing and lattice variations during charge/discharge, leading to structural damage and capacity degradation. To address this challenge, a La doping strategy guided by Bayesian optimization has been employed to prepare the high-performance O3-NaNiMnCuLaO (NMCL) cathode material. Density functional theory calculations reveal that the O 2p orbital overlaps with the t orbital of transition metals in NMCL, facilitating the formation of Na-O-La bonds and promoting the oxygen redox reaction kinetics.

View Article and Find Full Text PDF

[Expert consensus on ethical requirements for artificial intelligence (AI) processing medical data].

Sheng Li Xue Bao

December 2024

Virtual Simulation and Artificial Intelligence Committee, Chinese Association for Physiological Sciences.

As artificial intelligence technology rapidly advances, its deployment within the medical sector presents substantial ethical challenges. Consequently, it becomes crucial to create a standardized, transparent, and secure framework for processing medical data. This includes setting the ethical boundaries for medical artificial intelligence and safeguarding both patient rights and data integrity.

View Article and Find Full Text PDF

Dynamic biomechanical effects of medial meniscus tears on the knee joint: a finite element analysis.

J Orthop Surg Res

January 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.

Background: Meniscus tears can change the biomechanical environment of the knee joint and might accelerate the development of osteoarthritis. The aim of this study was to investigate the dynamic biomechanical effects of different medial meniscus tear positions and tear gaps on the knee during walking.

Methods: Seven finite element models of the knee joint were constructed, including the intact medial meniscus (IMM), radial stable tears in the anterior, middle, and posterior one-third regions of the medial meniscus (RSTA, RSTM, RSTP), and the corresponding unstable tears (RUTA, RUTM, RUTP).

View Article and Find Full Text PDF

LiZrF-based electrolytes for durable lithium metal batteries.

Nature

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.

Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.

View Article and Find Full Text PDF

Repairbads: An automatic and adaptive method to repair bad channels and segments for OPM-MEG.

Neuroimage

January 2025

Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China. Electronic address:

The optically pumped magnetometer (OPM) based magnetoencephalography (MEG) system offers advantages such as flexible layout and wearability. However, the position instability or jitter of OPM sensors can result in bad channels and segments, which significantly impede subsequent preprocessing and analysis. Most common methods directly reject or interpolate to repair these bad channels and segments.

View Article and Find Full Text PDF