9 results match your criteria: "Barcelona East Engineering School[Affiliation]"

A deep learning approach for automatic recognition of abnormalities in the cytoplasm of neutrophils.

Comput Biol Med

August 2024

Hospital Clínic of Barcelona-IDIBAPS, Biochemistry and Molecular Genetics Department, CORE Laboratory, Biomedical Diagnostic, Barcelona, Spain. Electronic address:

Background And Objectives: This study aims to develop and evaluate NeuNN, a system based on convolutional neural networks (CNN) and generative adversarial networks (GAN) for the automatic identification of normal neutrophils and those containing several types of inclusions or showing hypogranulation.

Methods: From peripheral blood smears, a set of 5605 digital images was obtained with neutrophils belonging to seven categories: Normal neutrophils (NEU), Hypogranulated (HYP) or containing cryoglobulins (CRY), Döhle bodies (DB), Howell-Jolly body-like inclusions (HJBLI), Green-blue inclusions of death (GBI) and phagocytosed bacteria (BAC). The dataset utilized in this study has been made publicly available.

View Article and Find Full Text PDF

Automatic normalized digital color staining in the recognition of abnormal blood cells using generative adversarial networks.

Comput Methods Programs Biomed

October 2023

Hospital Clínic of Barcelona-IDIBAPS, Biochemistry and Molecular Genetics Department, CORE Laboratory, Biomedical Diagnostic, Barcelona, Spain. Electronic address:

Background And Objectives: Combining knowledge of clinical pathologists and deep learning models is a growing trend in morphological analysis of cells circulating in blood to add objectivity, accuracy, and speed in diagnosing hematological and non-hematological diseases. However, the variability in staining protocols across different laboratories can affect the color of images and performance of automatic recognition models. The objective of this work is to develop, train and evaluate a new system for the normalization of color staining of peripheral blood cell images, so that it transforms images from different centers to map the color staining of a reference center (RC) while preserving the structural morphological features.

View Article and Find Full Text PDF

Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan).

Comput Methods Programs Biomed

February 2023

Technical University of Catalonia, Barcelona East Engineering School, Department of Mathematics, Barcelona, Spain. Electronic address:

Background And Objectives: Visual analysis of cell morphology has an important role in the diagnosis of hematological diseases. Morphological cell recognition is a challenge that requires experience and in-depth review by clinical pathologists. Within the new trend of introducing computer-aided diagnostic tools in laboratory medicine, models based on deep learning are being developed for the automatic identification of different types of cells in peripheral blood.

View Article and Find Full Text PDF

The use of artificial intelligence methods in the image-based diagnostic assessment of hematological diseases is a growing trend in recent years. In these methods, the selection of quantitative features that describe cytological characteristics plays a key role. They are expected to add objectivity and consistency among observers to the geometric, color, or texture variables that pathologists usually interpret from visual inspection.

View Article and Find Full Text PDF

Automatic identification of malaria and other red blood cell inclusions using convolutional neural networks.

Comput Biol Med

September 2021

Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, Barcelona, Catalonia, Spain.

Malaria is a serious disease responsible for thousands of deaths each year. Many efforts have been made to aid in the diagnosis of malaria using machine learning techniques, but to date, the presence of other elements that may interfere with the recognition of malaria has not been considered. We have developed the first deep learning model using convolutional neural networks capable of differentiating malaria-infected red blood cells from not only normal erythrocytes but also erythrocytes with other types of inclusions.

View Article and Find Full Text PDF

Background: Dysplastic neutrophils commonly show at least 2/3 reduction of the content of cytoplasmic granules by morphologic examination. Recognition of less granulated dysplastic neutrophils by human eyes is difficult and prone to inter-observer variability. To tackle this problem, we proposed a new deep learning model (DysplasiaNet) able to automatically recognize the presence of hypogranulated dysplastic neutrophils in peripheral blood.

View Article and Find Full Text PDF

Background And Objectives: Morphological differentiation among blasts circulating in blood in acute leukaemia is challenging. Artificial intelligence decision support systems hold substantial promise as part of clinical practise in detecting haematological malignancy. This study aims to develop a deep learning-based system to predict the diagnosis of acute leukaemia using blood cell images.

View Article and Find Full Text PDF

This article makes available a dataset that was used for the development of an automatic recognition system of peripheral blood cell images using convolutional neural networks [1]. The dataset contains a total of 17,092 images of individual normal cells, which were acquired using the analyzer CellaVision DM96 in the Core Laboratory at the Hospital Clinic of Barcelona. The dataset is organized in the following eight groups: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (promyelocytes, myelocytes, and metamyelocytes), erythroblasts and platelets or thrombocytes.

View Article and Find Full Text PDF

Background And Objectives: Morphological analysis is the starting point for the diagnostic approach of more than 80% of hematological diseases. However, the morphological differentiation among different types of normal and abnormal peripheral blood cells is a difficult task that requires experience and skills. Therefore, the paper proposes a system for the automatic classification of eight groups of peripheral blood cells with high accuracy by means of a transfer learning approach using convolutional neural networks.

View Article and Find Full Text PDF