3 results match your criteria: "Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh mdshafiulazam@chem.buet.ac.bd azam@ualberta.ca.[Affiliation]"
The development of safe and cost-effective methods for the treatment of dye polluted wastewater has been a great concern among researchers. Herein, we developed a nanocomposite (M3D-PAA-CCN) based on polyacrylic acid (PAA) crosslinked with magnetic 3D crosslinkers (M3D) and carboxylated cellulose nanocrystals (CCN), for the removal of cationic dyes from aqueous solutions. Acrylic-functionalized FeO nanoparticles were covalently linked to the polymer chains the form of the 3D crosslinker to introduce magnetic properties into the as-synthesized nanocomposite.
View Article and Find Full Text PDFThe mechanical performances of hydrogels are greatly influenced by the functionality of cross-linkers and their covalent and non-covalent interactions with the polymer chains. Conventional chemical cross-linkers fail to meet the demand of large toughness and high extensibility for their immediate applications as artificial tissues like ligaments, blood vessels, and cardiac muscles in human or animal bodies. Herein, we synthesized a new graphene oxide-based two-dimensional (2D) cross-linker (GOBC) and exploited the functionality of the cross-linker for the enhancement of toughness and stretchability of a poly(acrylic acid) (PAA) hydrogel.
View Article and Find Full Text PDFA combination of strong load-bearing capacity and high swelling degree is desired in hydrogels for many applications including drug delivery, tissue engineering, and biomedical engineering. However, a compromising relationship exists between these two most important characteristics of hydrogels. Improving both of these important properties simultaneously in a single hydrogel material is still beyond the satisfactory limit.
View Article and Find Full Text PDF