21 results match your criteria: "Bangladesh Army University of Science and Technology[Affiliation]"

The research aims to investigate how employees' knowledge-sharing behavior (KSB) is affected by knowledge-sharing attitude (KSA) and knowledge-sharing self-efficacy (KSSE) when knowledge-sharing intention (KSI) is a mediator at IT companies in Bangladesh, using the widely accepted Theory of Planned Behavior as the underlying research framework. This investigation is explanatory in nature which emphasizes on the link among variables and follows quantitative research method. Data was assembled in google form applying convenience sampling from 295 employees working in seven IT companies of Bangladesh.

View Article and Find Full Text PDF

The use of composite materials, whether metallic or non-metallic, is becoming more popular nowadays because of some of their superior characteristics compared to the use of wood and metallic materials alone. From this perspective, a new natural fiber reinforced composite by varying the fiber orientation was developed in this study using coir and pineapple leaf fiber. This work uses the Taguchi method to investigate the different effects of control factors on mechanical and physical characteristics of the fabricated natural fiber-based composites.

View Article and Find Full Text PDF

Pristine and arsenic-doped tetragonal boron nitride nanosheets (BNNS and As-BNNS) have been reported as potential candidates for toxic gas sensing applications. We have investigated the adsorption behavior of BNNS and As-BNNS for CO, HS, and SO gas molecules using first-principles density functional theory (DFT). Both BNNS and As-BNNS possess negative cohesive energies of -8.

View Article and Find Full Text PDF

Potassium germanium chloride (KGeCl) has emerged as a promising contender for use as an absorber material for lead-free perovskite solar cells (PSCs), offering significant potential in this domain. In this study, we conducted a density functional theory (DFT) investigation to analyze and assess the structural, electronic, thermomechanical, and optical characteristics of the cubic KGeCl absorber. The positive phonon dispersion curve confirmed the dynamical stability of KGeCl.

View Article and Find Full Text PDF

This article delves into the dynamic constructions of distinctive traveling wave solutions for wave circulation in shallow water mechanics, specifically addressing the time-fractional couple Drinfel'd-Sokolov-Wilson (DSW) equation. Introducing the previously untapped -expansion method, we successfully generate a diverse set of analytic solutions expressed in hyperbolic, trigonometric, and rational functions, each with permitted parameters. Visualization through three-dimensional (3D) as well two-dimensional (2D) plots, including contour plots, reveals inherent wave phenomena in the DSW equation.

View Article and Find Full Text PDF

This paper explores how digital entrepreneurs' intention toward blockchain technology adoption, perception of reduced costs, and knowledge of Artificial Intelligence impact achieving UN's Sustainable Development Goals (SDGs), drawing attention from various sectors. Present study applies explanatory sequential mixed method for data collection. Moreover, to work with the dual face patterned data, PLS-SEM is used to perform quantitative analysis of the data collected from 389 digital entrepreneurs who are chosen through purposive sampling and then content analysis is performed for the qualitative data according to the explanatory sequential mixed method's rule of thumb.

View Article and Find Full Text PDF

This study retrieves some novel exact solutions to the family of 3D space-time fractional Wazwaz-Benjamin-Bona-Mahony (WBBM) equations in the context of diverse nonlinear physical phenomena resulting from water wave mechanics. The family of WBBM equations is transformed for this purpose using a space and time fractional transformation into an ordinary differential equation (ODE). The ODE then uses a strong method, namely the Unified Method.

View Article and Find Full Text PDF

This paper is the first to look at the structural, electronic, mechanical, optical, and thermodynamic properties of the ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn) half-Heusler (HH) using DFT based first principles method. The lattice parameters that we have calculated are very similar to those obtained in prior investigations with theoretical and experimental data. The positive phonon dispersion curve confirm the dynamical stability of ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn).

View Article and Find Full Text PDF

Cylinders and thick walled cylindrical shells are commonly utilized in several industries to transport and store fluids under certain pressure and temperature conditions. In the present paper, a numerical solution is developed in order to investigate displacement, temperature and stress fields in a rotating pressure vessel made of generalized functionally graded material (FGM) subjected to different thermo-mechanical boundary conditions. The aim is to investigate the effect of Poisson ratio, internal pressure and temperature and inhomogeneity parameters on the stress and deformation distributions of the rotating pressure vessel.

View Article and Find Full Text PDF

A thermo-mechanically loaded rotating FGM cylindrical pressure vessels under parabolic changing properties: An analytical and numerical analysis.

Heliyon

February 2024

Laboratoire de Mécanique Matériaux et Énergétique (L2ME), Faculté de Technologie, Université de Bejaia, 06000, Bejaia, Algeria.

This study aims to develop an exact analytical solution for steady-state thermo-mechanical stress in a functionally graded (FG) thick-walled cylindrical vessel. The cylinder is subjected to combined rotational speed and internal pressures while the thermal load is with convective and radiative boundary conditions. The dimensionless governing equations and boundary conditions, represented as a quartic equation, are derived and solved using Ferrari's method.

View Article and Find Full Text PDF

This study presents a 2D comprehensive analytical and numerical analysis of the thermomechanical stresses in an unsymmetric dual compound thick cylinder under steady-state conditions. By employing mathematical analysis, this research aims to investigate the effectiveness of a 2D compound cylinder in reducing elastic and thermoelastic stresses. The temperature and displacement fields are thought to be dependent on the radial and circumferential directions, subject to asymmetric thermal and mechanical boundary conditions on the inner and outer surfaces.

View Article and Find Full Text PDF

Skin cancer poses a significant healthcare challenge, requiring precise and prompt diagnosis for effective treatment. While recent advances in deep learning have dramatically improved medical image analysis, including skin cancer classification, ensemble methods offer a pathway for further enhancing diagnostic accuracy. This study introduces a cutting-edge approach employing the Max Voting Ensemble Technique for robust skin cancer classification on ISIC 2018: Task 1-2 dataset.

View Article and Find Full Text PDF

An investigation was carried out in order to develop an accurate analytical solution and a numerical (FEA) solution for steady-state heat transfer in a circular sandwich structure incorporated with convective-radiative boundary conditions. The dimensional governing equations and boundary conditions were developed in the form of a 4th order algebraic equation, and then the solution was obtained using Ferrari's method. By solving for the roots of the quartic equation, we were able to determine the dimensionless temperature fields of the FG sandwich composite.

View Article and Find Full Text PDF

In this study, water levels resulting from the dynamic interaction of tide and surge are estimated by solving a 2-D vertically integrated shallow water equations numerically. To solve the equations on the specific 2-D grid, the explicit Leapfrog scheme is implemented, adopting a staggered Arakawa C-grid. The domain's complex land-sea interface is approximated through the stair-step method in order to employ the finite difference technique.

View Article and Find Full Text PDF

Comparative evaluation of low-cost ceramic membrane and polymeric micro membrane in algal membrane photobioreactor for wastewater treatment.

J Environ Manage

November 2023

Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.

Algal-bacterial membrane photobioreactor (AMPBR) is proven as a highly energy-efficient process for treating domestic wastewater. This study compared the application of polymeric micro-membrane (PMM) and a low-cost ceramic membrane (LCM) to the AMPBR process for treating domestic wastewater with low and high organic pollution levels. Experiments were conducted over 57 days using two PMM-AMPBRs and two LCM-AMPBRs, operating on a 12-h dark/light cycle in a continuous mode.

View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM) patients are a significant threat to chronic kidney disease (CKD) development during their life. However, there is always a high chance of delay in CKD detection because CKD can be asymptomatic, and T1DM patients bypass traditional CKD tests during their routine checkups. This study aims to develop and validate a prediction model and nomogram of CKD in T1DM patients using readily available routine checkup data for early CKD detection.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is one of the severe side effects of type 1 diabetes mellitus (T1DM). However, the detection and diagnosis of CKD are often delayed because of its asymptomatic nature. In addition, patients often tend to bypass the traditional urine protein (urinary albumin)-based CKD detection test.

View Article and Find Full Text PDF

In this current study, we described a modified extended tanh-function (mETF) method to find the new and efficient exact travelling and solitary wave solutions to the modified Liouville equation and modified regularized long wave (mRLW) equation in water wave mechanics. Travelling wave transformation decreases the leading equation to traditional ordinary differential equations (ODEs). The standardized balance technique provides the instruction of the portended polynomial related result stimulated from the mETF method.

View Article and Find Full Text PDF

The COVID-19 outbreak has demonstrated the diverse challenges that supply chains face to significant disruptions. Vaccine supply chains are no exception. Therefore, it is elemental that challenges to the COVID-19 vaccine supply chain (VSC) are identified and prioritized to pave the way out of this pandemic.

View Article and Find Full Text PDF

Effects of Al substitution by Si in TiAlC nanolaminate.

Sci Rep

February 2021

School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.

Recently, a series of high-purity Ti(AlSi)C solid solutions with new compositions (x = 0.0, 0.2, 0.

View Article and Find Full Text PDF

Binary (Chitosan-Cu(II), CCu) and Ternary (Chitosan-Alginate-Cu(II), CACu) composite materials were synthesized at variable composition: CCu (1:1), CACu1 (1:1:1), CACu2 (1:2:1) and CACu3 (2:1:1). Characterization was carried out via spectroscopic (FTIR, solids C-13 NMR, XPS and Raman), thermal (differential scanning calorimetry (DSC) and TGA), XRD, point of zero charge and solvent swelling techniques. The materials' characterization confirmed the successful preparation of the polymer-based composites, along with their variable physico-chemical and adsorption properties.

View Article and Find Full Text PDF