1,477 results match your criteria: "Bach Institute of Biochemistry[Affiliation]"

Cells of the methylotrophic yeast Ogataea parapolymorpha have two genes encoding low-affinity phosphate transporters: PHO87, encoding the plasma membrane transporter, and PHO91, encoding a protein, which is homologous to the Saccharomyces cerevisiae vacuolar membrane transporter. Earlier, we reported that inactivation of PHO91 in O. parapolymorpha interferes with methanol utilization due to the lack of activity of methanol oxidase encoded by the MOX gene.

View Article and Find Full Text PDF

Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay (LFIA) was performed.

View Article and Find Full Text PDF

Uncontrolled use of pesticides in agriculture leads to negative consequences for the environment, as well as for human and animal health. Therefore, timely detection of pesticides will allow application of measures to eliminate the excess of maximum residue limits and reduce possible negative consequences in advance. Common methods of pesticide analysis suffer from high costs, and are time consuming, and labor intensive.

View Article and Find Full Text PDF

The phosphorylation reaction, catalyzed by the enzyme protein kinase A (PKA), plays one of the key roles in the work of the glutamatergic system, primarily involved in memory functioning. The analysis of the dynamic behavior of the enzyme-substrate complex allows one to learn the mechanism of the enzymatic reaction. According to the results of classical molecular dynamics calculations followed by hierarchical clustering, the most preferred proton acceptor during the phosphorylation reaction catalyzed by PKA is the carboxyl group of the amino acid residue Asp166; however, the γ-phosphate group of ATP can also act as an acceptor.

View Article and Find Full Text PDF

Bacteria with the simplest system for solar energy absorption and conversion use various types of light-harvesting complexes for these purposes. Light-harvesting complex 2 (LH2), an important component of the bacterial photosynthetic apparatus, has been structurally well characterized among purple non-sulfur bacteria. In contrast, so far only one high-resolution LH2 structure from sulfur bacteria is known.

View Article and Find Full Text PDF

Pediatric dilated cardiomyopathy (DCM) is a rare heart muscle disorder leading to the enlargement of all chambers and systolic dysfunction. We identified a novel de novo variant, c.88A>G (p.

View Article and Find Full Text PDF

Polyphenols are powerful natural antioxidants with numerous biological activities. They change cell membrane permeability, interact with receptors, intracellular enzymes, and cell membrane transporters, and quench reactive oxygen species (ROS). yeast, being similar to mammalian cells, can be used as a model to study their survival ability upon long-lasting cultivation, assaying the effect of dihydroquercetin polyphenol (DHQ).

View Article and Find Full Text PDF

The calcium cation is a crucial signaling molecule involved in numerous cellular pathways. Beyond its role as a messenger or modulator in intracellular cascades, calcium's function in excitable cells, including nerve impulse transmission, is remarkable. The central role of calcium in nervous activity has driven the rapid development of fluorescent techniques for monitoring this cation in living cells.

View Article and Find Full Text PDF

Semiconductor colloidal nanostructures capped with chiral organic molecules are a research hotspot due to their wide range of important implications for photonic and spintronic applications. However, to date, the study of chiral ligands has been limited almost exclusively to naturally occurring chiral amino and hydroxy acids, which typically contain only one stereocenter. Here, we show the pronounced induction of chirality in atomically thin CdSe nanoplatelets (NPLs) by capping them with enantiopure menthol derivatives as multi-stereocenter molecules.

View Article and Find Full Text PDF

The problem of treating cancer patients with lung cancer has become more difficult due to the SARS-CoV-2 viral infection and concomitant bacterial lesions. The analysis shows that the photodynamic effect of long-wavelength polycationic photosensitizers suppresses the tumor process (including the destruction of cancer stem cells), SARS-CoV-2 coronavirus infection, Gram-positive and Gram-negative bacteria, including those that can cause pneumonia. Therefore, the photodynamic approach using such photosensitizers is promising for the development of an effective treatment method for patients with lung cancer, including those with SARS-CoV-2 infection and bacterial complications.

View Article and Find Full Text PDF

Given the current need for predictive persisting model for , we adopted a classical assay to study drug-tolerant bacterial persisters, focusing on the behavior of a small antibiotic-insensitive subpopulation during prolonged exposure to moxifloxacin. Our study showed a wide-ranging response of , depending on antibiotic concentration, growth stage of mycobacterial cultures, and the availability of potassium ions in the medium. Mid-logarithmic cultures, initially grown in either balanced or K-free medium, contained small sup-populations capable of prolonged and stable survival in the presence of moxifloxacin.

View Article and Find Full Text PDF

In contrast to homogeneous enzyme catalysis, nanozymes are nanosized heterogeneous catalysts that perform reactions on a rigid surface. This fundamental difference between enzymes and nanozymes is often overlooked in kinetic studies and practical applications. In this article, using 14 nanozymes of various compositions (core@shell, metal-organic frameworks, metal, and metal oxide nanoparticles), we systematically demonstrate that nontypical features of nanozymes, such as multiple catalytic activities, chemical transformations, and aggregation, need to be considered in nanozyme catalysis.

View Article and Find Full Text PDF

The intercommunication between nerves and muscles plays an important role in the functioning of our body, and its failure leads to severe neuromuscular disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. Understanding the cellular and molecular mechanisms underlying nerve-muscle interactions and mediating their mutual influence is an integral part of strategies aimed at curing neuromuscular diseases. Here, we propose a novel ex vivo experimental model for the spinal cord (SC) and skeletal muscle interactions which for the first time utilizes only fully formed (but not yet quite functional) postnatal tissues.

View Article and Find Full Text PDF

Matrikines of Sea Cucumbers: Structure, Biological Activity and Mechanisms of Action.

Int J Mol Sci

November 2024

Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok 690922, Russia.

Matrikines (MKs), the products of enzymatic fragmentation of various extracellular matrix (ECM) proteins, regulate cellular activity by interacting with specific receptors. MKs affect cell growth, proliferation, and migration, can induce apoptosis and autophagy, and are also effectively used in biomedicine and functional nutrition. Recently, there has been great interest in the structural features and biological activity of MKs from various sources.

View Article and Find Full Text PDF

Oestrogen Detoxification Ability of White Rot Fungus LE-BIN 072: Exoproteome and Transformation Product Profiling.

J Fungi (Basel)

November 2024

Bach Institute of Biochemistry, Federal Research Center, Fundamentals of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia.

White rot fungi, especially representatives of the genus spp. (Polyporaceae), are effective destructors of various xenobiotics, including oestrogens (phenol-like steroids), which are now widespread in the environment and pose a serious threat to the health of humans, animals and aquatic organisms. In this work, the ability of the white rot fungus LE-BIN 072 to transform oestrone (E1) and 17β-oestradiol (E2), the main endocrine disruptors, was shown.

View Article and Find Full Text PDF

The Key Enzymes of Carbon Metabolism and the Glutathione Antioxidant System Protect Yeast Against pH-Induced Stress.

J Fungi (Basel)

October 2024

Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia.

In this study, we first thoroughly assayed the response of the key enzymes of energy metabolism and the antioxidant system in yeast at extreme pH. The activity of the tricarboxylic acid cycle enzymes, namely NAD-dependent isocitrate dehydrogenase, aconitate hydratase, NAD-dependent malate dehydrogenase, and fumarate hydratase, NADPH-producing enzymes of glucose-6-P dehydrogenase and NADP-dependent isocitrate dehydrogenase, and the enzymes of the glutathione system was assessed. All the enzymes that were tested showed a significant induction contrary to some decrease in the aconitate hydratase activity with acidic and alkaline stress.

View Article and Find Full Text PDF

When developing immunochemical test systems, it is necessary to obtain specific antibodies. Their quality depends, among other things, on the immunogen used. When preparing hapten-protein conjugates to obtain antibodies for low-molecular-weight compounds, the key factors are the structure of the hapten itself, the presence of a spacer, the size of the carrier protein and the degree of its modification by hapten molecules.

View Article and Find Full Text PDF

Loop-mediated isothermal amplification (LAMP) is a rapid and efficient method for DNA amplification, producing concatemers of varying lengths (amplicons). This study explores the characterization of LAMP amplicons using asymmetric flow field-flow fractionation (AF4) and their realization in LAMP - lateral flow assay (LFA) for point-of-care diagnostics. We examined LAMP products from the invA gene of Salmonella enterica using two specific primer sets and three methods: fluorescent staining with SYBR Green, electrophoretic detection, and AF4.

View Article and Find Full Text PDF

Clostridioides difficile causes a large proportion of nosocomial colon infections by producing toxins TcdA and TcdB as key virulence factors. TcdA and TcdB have analogous domain structures with a receptor-binding domain containing C-terminal combined repetitive oligopeptides (CROPs), an attractive target for the development of therapeutic antibodies. Here, we identify and characterize two potent neutralizing single-domain camelid anti-CROPsA antibodies, C4.

View Article and Find Full Text PDF
Article Synopsis
  • - A new bimetallic nanorod structure was created using a Raman reporter to enhance the detection of the insecticide fipronil in a specific immunoassay technique called SERS-LFIA.
  • - This method achieved a very low detection limit for fipronil at 4.6 pg/mL and is the first of its kind specifically for this insecticide, demonstrating effectiveness in real food samples like cucumber and apple juice.
  • - The use of antibodies to functionalize the SERS nanotag offers a flexible approach for enhancing various lateral flow immunoassays, improving their overall performance.
View Article and Find Full Text PDF

Composting of the organic fraction of municipal solid waste (OFMSW) is accompanied by the emission of large volumes of harmful, hazardous and foul-smelling volatile organic compounds (VOCs). To improve the efficiency of terpenes removal, which constitute a significant part of VOCs, pure cultures of microorganisms dominating in its microbiota were isolated from the microbial community of the biofilter, which has been cleaning such emissions for a long time. Seven pure cultures were isolated and then tested for being able to grow on a mineral medium in the presence of terpene vapor as the only source of carbon and energy.

View Article and Find Full Text PDF

Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting.

View Article and Find Full Text PDF

Recently, a number of message passing neural network (MPNN)-based methods have been introduced that, based on backbone atom coordinates, efficiently recover native amino acid sequences of proteins and predict modifications that result in better expressing, more soluble, and stable variants. However, usually, X-ray structures, or artificial structures generated by algorithms trained on X-ray structures, were employed to define target backbone conformations. Here, we show that commonly used algorithms ProteinMPNN and SolubleMPNN display low sequence recovery on structures determined using NMR.

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate-dependent enzymes play a crucial role in nitrogen metabolism. Carbonyl compounds, such as O-substituted hydroxylamines, stand out among numerous specific inhibitors of these enzymes, including those of practical importance, because they react with pyridoxal 5'-phosphate in the active site of the enzymes to form stable oximes. O-substituted hydroxylamines mimic the side group of amino acid substrates, thus providing highly potent and specific inhibition of the corresponding enzymes.

View Article and Find Full Text PDF

An important role of a particular synonymous codon composition of a gene in its expression level is well known. There are a number of algorithms optimizing codon usage of recombinant genes to maximize their expression in host cells. Nevertheless, the underlying mechanism remains unsolved and is of significant relevance.

View Article and Find Full Text PDF