5 results match your criteria: "BMS Institute of Technology Management[Affiliation]"

Antennas with higher gain and efficiency deliver superior performance across a wide frequency range. Achieving these characteristics at high frequencies while keeping a compact size necessitates sophisticated design approaches. This research presents a substrate-integrated waveguide (SIW) cavity-backed slotted patch antenna (SPA) tailored for the 28 GHz and 34 GHz frequency bands.

View Article and Find Full Text PDF

This article proposes a dual mode dual-polarized antenna configuration for IRNSS and fifth generation (5G) applications, operating at a frequency of 3.5 GHz based on characteristic mode analysis (CMA), and aims to provide broadband dual-polarized functionality. The original design of the antenna is a traditional patch antenna, and its dual-polarized features are determined using characteristic mode analysis.

View Article and Find Full Text PDF

Virtualisation is a major technology in cloud computing for optimising the cloud data centre's power usage. In the current scenario, most of the services are migrated to the cloud, putting more load on the cloud data centres. As a result, the data center's size expands resulting in increased energy usage.

View Article and Find Full Text PDF

Detection of Breast Cancer with Lightweight Deep Neural Networks for Histology Image Classification.

Crit Rev Biomed Eng

November 2022

Department of Electronics and Communication Engineering, BMS Institute of Technology Management, Bengaluru 560064, India.

Many researchers have developed computer-assisted diagnostic (CAD) methods to diagnose breast cancer using histopathology microscopic images. These techniques help to improve the accuracy of biopsy diagnosis with hematoxylin and eosin-stained images. On the other hand, most CAD systems usually rely on inefficient and time-consuming manual feature extraction methods.

View Article and Find Full Text PDF

Deep Learning-Based Denoising for High b-Value at 2000 s/mm2 Diffusion-Weighted Imaging.

Crit Rev Biomed Eng

January 2021

Medical Imaging Research Center (MIRC), Department of Medical Electronics, Dayananda Sagar College of Engineering, Bengaluru, India; Magnetic Resonance Research Center, Columbia University, New York, NY 10027.

Diffusion-weighted imaging (DWI) allows white matter quantification of the white matter tracts of the brain. However, at a high b-value (≥ 2000 s/mm2), DWI acquisition suffers from noise due to longer acquisition times obscuring white matter interpretation. DWI denoising techniques can be used to acquire high b-value DWI without increasing the number of signal averages.

View Article and Find Full Text PDF