56 results match your criteria: "Autoimmunity Institute[Affiliation]"

Cardiovascular complications are observed in up to one-third of patients with systemic sclerosis (SSc). Early identification and management of SSc-associated primary cardiac disease is often challenging, given the complex disease pathophysiology, significant variability in clinical presentation, and scarce disease-modifying therapeutics. Here, we review the molecular mechanisms involved in SSc-associated cardiac disease pathogenesis, novel diagnostic tools and emerging therapies.

View Article and Find Full Text PDF

Modulation of Lymphotoxin β Surface Expression by Kaposi's Sarcoma-Associated Herpesvirus K3 Through Glycosylation Interference.

J Med Virol

January 2025

Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Kaposi's sarcoma-associated herpesvirus (KSHV) employs diverse mechanisms to subvert host immune responses, contributing to its infection and pathogenicity. As an immune evasion strategy, KSHV encodes the Membrane-Associated RING-CH (MARCH)-family E3 ligases, K3, and K5, which target and remove several immune regulators from the cell surface. In this study, we investigate the impact of K3 and K5 on lymphotoxin receptor (LTβR) ligands, LTβ and LIGHT, which are type II transmembrane proteins and function as pivotal immune mediators during virus infection.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) patients are 90% women and over three times more likely to die of cardiovascular disease than women in the general population. Chest pain with no obstructive cardiac disease is associated with coronary microvascular disease (CMD), where narrowing of the small blood vessels can lead to ischemia, and frequently reported by SLE patients. Using whole blood RNA samples, we asked whether gene signatures discriminate SLE patients with coronary microvascular dysfunction (CMD) on cardiac MRI (n = 4) from those without (n = 7) and whether any signaling pathway is linked to the underlying pathobiology of SLE CMD.

View Article and Find Full Text PDF

Background: Systemic sclerosis (SSc) is a rare connective tissue disease, frequently affecting the skin, lungs, and pulmonary vasculature. Approximately 30-50% of SSc patients develop interstitial lung disease (SSc-ILD), with 30-35% of related deaths attributed to it. Even though men are less likely to develop systemic sclerosis, they have a higher incidence of SSc-ILD than women, and they tend to develop it at a younger age with a higher mortality rate.

View Article and Find Full Text PDF

SARS-CoV-2 ORF8 drives osteoclastogenesis in preexisting immune-mediated inflammatory diseases.

JCI Insight

December 2024

Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Patients with immune-mediated inflammatory diseases (IMIDs) like rheumatoid arthritis (RA) are at higher risk for severe COVID-19 and long-term complications in bone health. Emerging clinical evidence demonstrated that SARS-CoV-2 infection reduces bone turnover and promotes bone loss, but the mechanism underlying worsened bone health remains elusive. This study sought to identify specific immune mediators that exacerbated preexisting IMIDs after SARS-CoV-2 exposure.

View Article and Find Full Text PDF

Molecular underpinnings of aging contributing to systemic sclerosis pathogenesis.

Curr Opin Rheumatol

January 2025

Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA.

Purpose Of Review: Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by diffuse organ fibrosis and vasculopathy. Aberrant aging has been increasingly implicated in fibrotic diseases of the lung and other organs. The aim of this review is to summarize the established mechanisms of aging and how they may contribute to the pathogenesis of SSc.

View Article and Find Full Text PDF

Mx1-ing it up-Mitochondrial relay for interferon-dependent, unconventional IL-1β release in SLE monocytes.

Immunity

November 2024

Kao Autoimmunity Institute and Department of Medicine, Division of Rheumatology and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA. Electronic address:

The role of type I interferon (IFN-I) in systemic lupus erythematosus (SLE) is well documented, but the role of interleukin (IL)-1β remains elusive. In this issue of Immunity, Caielli et al. identified an SLE monocyte population coproducing IL-1β and IFN-I and described how mitochondrial nucleic-acid-containing RBCs engage cGAS/STING, RIG-I, MDA5, and NLRP3 for unconventional IL-1β release.

View Article and Find Full Text PDF

Objectives: To develop evidenced recommendations to allow the global systemic lupus erythematosus (SLE) advocacy community to effectively advocate for change and improve care for patients with SLE.

Methods: A Global Working Group consisting of representatives from patient advocacy groups, professional organisations, and the SLE healthcare community defined key areas of unmet need in patients with SLE. Targeted principles for each area of unmet need guided a literature review to investigate the current global situation, pre-existing advocacy efforts, and best practices from other therapy areas.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) growth is dependent on both B cell receptor (BCR) signaling and signals from microenvironmental T helper (Th) cells. We previously described a mechanism where Th cells enhance BCR signaling and proliferation through CD45 phosphatase activity regulation via galectin-1 and CD43. The CLL negative prognostic indicator CD38 is linked to BCR signaling and proliferation, with its expression induced by Th cells.

View Article and Find Full Text PDF

A novel gain-of-function phosphorylation site modulates PTPN22 inhibition of TCR signaling.

J Biol Chem

June 2024

Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA. Electronic address:

Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a major autoimmunity gene and is a known inhibitor of T cell receptor (TCR) signaling and drug target for cancer immunotherapy. However, little is known about PTPN22 posttranslational regulation. Here, we characterize a phosphorylation site at Ser situated C terminal to the catalytic domain of PTPN22 and its roles in altering protein function.

View Article and Find Full Text PDF

In the context of aging, the susceptibility to infectious diseases increases, leading to heightened morbidity and mortality. This phenomenon, termed immunosenescence, is characterized by dysregulation in the aging immune system, including abnormal alterations in lymphocyte composition, elevated basal inflammation, and the accumulation of senescent T cells. Such changes contribute to increased autoimmune diseases, enhanced infection severity, and reduced responsiveness to vaccines.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune disease in which the joint lining or synovium becomes highly inflamed and majorly contributes to disease progression. Understanding pathogenic processes in RA synovium is critical for identifying therapeutic targets. We performed laser capture microscopy (LCM) followed by RNA sequencing (LCM-RNAseq) to study regional transcriptomes throughout RA synovium.

View Article and Find Full Text PDF

The therapeutic potential of immunoengineering for systemic autoimmunity.

Nat Rev Rheumatol

April 2024

Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA, USA.

Disease-modifying drugs have transformed the treatment options for many systemic autoimmune diseases. However, an evolving understanding of disease mechanisms, which might vary between individuals, is paving the way for the development of novel agents that operate in a patient-tailored manner through immunophenotypic regulation of disease-relevant cells and the microenvironment of affected tissue domains. Immunoengineering is a field that is focused on the application of engineering principles to the modulation of the immune system, and it could enable future personalized and immunoregulatory therapies for rheumatic diseases.

View Article and Find Full Text PDF

Protocol to create a murine subcutaneous air pouch for the study of monosodium urate crystal-induced gout.

STAR Protoc

March 2024

Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedar Sinai Medical Center, Los Angeles, CA 90048, USA; The Kao Autoimmunity Institute, Cedar Sinai Medical Center, Los Angeles, CA 90048, USA. Electronic address:

Monosodium urate (MSU) crystal deposition in articular joints and bursal tissue causes acute joint inflammation, which is a hallmark of gout. Here, we describe the steps necessary to create a subcutaneous air pouch on the back of mice that resembles this bursa-like space with a synovial lining-like membrane. We then detail the injection of MSU crystals into this pouch, which induces a localized inflammatory response reminiscent of gout and approaches to quantify the inflammatory response.

View Article and Find Full Text PDF

ABCD of IA: A multi-scale agent-based model of T cell activation in inflammatory arthritis.

Biomater Sci

April 2024

Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.

Biomaterial-based agents have been demonstrated to regulate the function of immune cells in models of autoimmunity. However, the complexity of the kinetics of immune cell activation can present a challenge in optimizing the dose and frequency of administration. Here, we report a model of autoreactive T cell activation, which are key drivers in autoimmune inflammatory joint disease.

View Article and Find Full Text PDF

Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the gene-is overexpressed in prostate tumors. We found up-regulated in human prostate tumors and expression inversely correlated with overall survival.

View Article and Find Full Text PDF

During transfusion of red blood cells (RBCs), recipients are exposed to both ABO and non-ABO 'minor' antigens. RBC donor units and recipient RBCs are not routinely matched for non-ABO antigens. Thus, recipients are exposed to many RBC alloantigens that can lead to RBC alloantibody production and subsequent clinically significant hemolysis.

View Article and Find Full Text PDF

Immunomodulatory Nanoparticles for Modulating Arthritis Flares.

ACS Nano

January 2024

Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, California 92093, United States.

Disease-modifying drugs have improved the treatment for autoimmune joint disorders, such as rheumatoid arthritis, but inflammatory flares are a common experience. This work reports the development and application of flare-modulating poly(lactic--glycolic acid)-poly(ethylene glycol)-maleimide (PLGA-PEG-MAL)-based nanoparticles conjugated with joint-relevant peptide antigens, aggrecan and type 2 bovine collagen. Peptide-conjugated PLGA-PEG-MAL nanoparticles encapsulated calcitriol, which acted as an immunoregulatory agent, and were termed calcitriol-loaded nanoparticles (CLNP).

View Article and Find Full Text PDF

Objective: We aimed to investigate the hypothesis that interferon (IFN)-stimulated gene (ISG) expression in systemic lupus erythematosus (SLE) monocytes is linked to changes in metabolic reprogramming and epigenetic regulation of ISG expression.

Methods: Monocytes from healthy volunteers and patients with SLE at baseline or following IFNα treatment were analyzed by extracellular flux analysis, proteomics, metabolomics, chromatin immunoprecipitation, and gene expression. The histone demethylases KDM6A/B were inhibited using glycogen synthase kinase J4 (GSK-J4).

View Article and Find Full Text PDF

Background: Women with SLE have an elevated risk of cardiovascular disease. Many women with SLE frequently report chest pain in the absence of obstructive coronary artery disease (CAD) due to coronary microvascular dysfunction (CMD), a form of ischemia with no obstructive CAD. Echocardiographic studies have shown that SLE patients have reduced left ventricular (LV) function, which may also correlate with higher SLE disease activity scores.

View Article and Find Full Text PDF

Lupus spectrum ambiguity has long-term negative implications for patients.

Lupus Sci Med

January 2023

Lupus Center of Excellence, Autoimmunity Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA.

Lupus is a complex disease that is often difficult to diagnose. Risks of diagnostic delays include non-specific signs and symptoms that mimic other diseases and a lack of diagnostic criteria and referral pathways for non-specialists. To address these issues, we convened a series of virtual meetings with members of our Addressing Lupus Pillars for Health Advancement clinical care team.

View Article and Find Full Text PDF

Receptor-type protein phosphatase α (RPTPα) promotes fibroblast-dependent arthritis and fibrosis, in part, by enhancing the activation of the kinase SRC. Synovial fibroblasts lining joint tissue mediate inflammation and tissue damage, and their infiltration into adjacent tissues promotes disease progression. RPTPα includes an ectodomain and two intracellular catalytic domains (D1 and D2) and, in cancer cells, undergoes inhibitory homodimerization, which is dependent on a D1 wedge motif.

View Article and Find Full Text PDF

CARD-only proteins regulate in vivo inflammasome responses and ameliorate gout.

Cell Rep

March 2023

Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA. Electronic address:

Inflammatory responses are crucial for controlling infections and initiating tissue repair. However, excessive and uncontrolled inflammation causes inflammatory disease. Processing and release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 depend on caspase-1 activation within inflammasomes.

View Article and Find Full Text PDF

Background: Women with SLE have an elevated risk of CVD morbidity and mortality and frequently report chest pain in the absence of obstructive CAD. Echocardiographic studies often demonstrate reduced LV function, correlating with higher disease activity. We used cardiac MRI (cMRI) to investigate the relationship between SLE, related inflammatory biomarkers and cardiac function in female SLE patients.

View Article and Find Full Text PDF