741 results match your criteria: "Austrian Centre of Industrial Biotechnology[Affiliation]"

The enzymatic reaction kinetics on cellulose and other solid substrates is limited by the access of the enzyme to the reactive substrate sites. We introduce a general model in which the reaction rate is determined by the active surface area, and the resulting kinetics consequently reflects the evolving relationship between the exposed substrate surface and the remaining substrate volume. Two factors influencing the overall surface-to-volume ratio are considered: the shape of the substrate particles, characterized by a single numerical parameter related to its dimensionality, and the distribution of the particle sizes.

View Article and Find Full Text PDF

Biotechnological production of recombinant molecules relies heavily on fed-batch processes. However, as the cells' growth, substrate uptake, and production kinetics are often unclear, the fed-batches are frequently operated under sub-optimal conditions. Process design is based on simple feed profiles (e.

View Article and Find Full Text PDF

The analysis of protein-bound glycans has gained significant attention due to their pivotal roles in physiological and pathological processes like cell-cell recognition, immune response, and disease progression. Routine methods for glycan analysis are challenged by the very similar physicochemical properties of their carbohydrate components. As an alternative, lectins, which are proteins that specifically bind to glycans, have been integrated into biosensors for glycan detection.

View Article and Find Full Text PDF

β1,4-galactosylation is a typical human N-glycan formation with functional impact on proteins, particularly known for IgGs. Therefore, the expression of recombinant proteins with controlled galactosylation is an important quality parameter in the biotech industry. Here we describe the establishment of a plant-based expression platform for the manufacturing of recombinant proteins carrying β1,4-galactosylated N-glycans.

View Article and Find Full Text PDF

Enzyme immobilization into carrier materials has broad importance in biotechnology, yet understanding the catalysis of enzymes bound to solid surfaces remains challenging. Here, we explore surface effects on the catalysis of sucrose phosphorylase through a fusion protein approach. We immobilize the enzyme via a structurally rigid α-helical linker [EAK] of tunable spacer length due to the variable number of pentapeptide repeats used ( = 6, 14, 19).

View Article and Find Full Text PDF

Many relevant metabolites, as well as chemical commodities, contain at least one sulfate ester group. Consequently, biocatalytic strategies to attach sulfate to a molecule under mild conditions are of high interest. In order to expand the enzymatic toolbox available, five new arylsulfate sulfotransferases (ASSTs) were identified in this study.

View Article and Find Full Text PDF
Article Synopsis
  • The synthesis of nitriles is crucial in organic chemistry, but traditional methods often involve toxic reagents and harsh conditions.
  • Enzymes like aldoxime dehydratases (Oxds) offer safer alternatives, with recent research highlighting their potential and the limited number of Oxds studied in detail.
  • This review discusses the overexpression, purification, and application of Oxds, and evaluates their industrial prospects compared to other nitrile synthesis innovations.
View Article and Find Full Text PDF

2,3-Butanediol is a valuable raw material for many industries. Compared to its classical production from petroleum, novel fermentation-based manufacturing is an ecologically superior alternative. To be also economically feasible, the production bioprocesses need to be well optimized.

View Article and Find Full Text PDF

Expanding the high-pH range of the sucrose synthase reaction by enzyme immobilization.

J Biotechnol

December 2024

Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), Graz, Austria. Electronic address:

The glycosylation of an alcohol group from a sugar nucleotide substrate involves proton release, so the reaction is favored thermodynamically at high pH. Here, we explored expansion of the alkaline pH range of sucrose synthase (SuSy; EC 2.4.

View Article and Find Full Text PDF

Development of a whole-cell SELEX process to select species-specific aptamers against Aspergillus niger.

Fungal Biol Biotechnol

November 2024

Research Group Biochemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.

Background: Spores produced by the filamentous fungus Aspergillus niger are abundant in a variety of environments. The proliferation of this fungus in indoor environments has been associated to health risks and its conidia can cause allergic reaction and severe invasive disease in animals and humans. Therefore, the detection and monitoring of Aspergillus conidia is of utmost importance to prevent serious fungal infections and contaminations.

View Article and Find Full Text PDF

Highly pure measles virus generated by combination of salt-active nuclease treatment and heparin affinity chromatography.

J Chromatogr A

December 2024

Austrian Centre of Industrial Biotechnology, Vienna, Austria; Institute of Bioprocess Science and Engineering (IBSE), BOKU University, Vienna, Austria.

Article Synopsis
  • Highly purified virus preparations are crucial for determining the activity and potency of viruses, necessitating simple and efficient purification methods in early research phases.* -
  • The study focused on using heparin affinity chromatography for purifying a sensitive strain of the measles virus, achieving high capture rates of infectious virus while experimenting with endonuclease treatments to reduce DNA impurities.* -
  • The combination of Captoâ„¢ Heparin with M-SAN endonuclease resulted in a notable yield of 62% purity and significantly lower DNA contamination, suggesting this method is suitable for measles virus production in a scalable manufacturing process.*
View Article and Find Full Text PDF

Protein engineering with non-canonical amino acids (ncAAs) holds great promises for diverse applications, however, there are still limitations in the implementation of this technology at manufacturing scale. The know-how to efficiently produce ncAA-incorporated proteins in a scalable manner is still very limited. In the present study, we incorporated the ncAA N-[(2-azidoethoxy)carbonyl]-L-lysine (Azk) into an antigen binding fragment (Fab) in Escherichia coli.

View Article and Find Full Text PDF

Knock-out of the major regulator Flo8 in Komagataella phaffii results in unique host strain performance for methanol-free recombinant protein production.

N Biotechnol

December 2024

CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, BOKU University, Vienna, Austria; BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria. Electronic address:

Flo8 is a main transcriptional regulator of flocculation and pseudohyphal growth in yeast. Disruption of FLO8 in the popular recombinant protein production host Komagataella phaffii (Pichia pastoris) prevents pseudohyphal growth and reduces cell-to-surface adherence, making the mutant an interesting platform for research and industry. However, knowledge of the physiological impact of the mutation remained scarce.

View Article and Find Full Text PDF

This study presents a graphene field-effect transistor (gFET) biosensor with dual detection capabilities for SARS-CoV-2: one RNA detection assay to confirm viral positivity and the other for nucleocapsid (N-)protein detection as a proxy for infectiousness of the patient. This technology can be rapidly adapted to emerging infectious diseases, making an essential tool to contain future pandemics. To detect viral RNA, the highly conserved E-gene of the virus was targeted, allowing for the determination of SARS-CoV-2 presence or absence using nasopharyngeal swab samples.

View Article and Find Full Text PDF

Enzyme-modified electrodes are core components of electrochemical biosensors for diagnostic and environmental analytics and have promising applications in bioelectrocatalysis. Despite huge research efforts spanning decades, design of enzyme electrodes for superior performance remains challenging. Nanoporous gold (npAu) represents advanced electrode material due to high surface-to-volume ratio, tunable porosity, and intrinsic redox activity, yet its coupling with enzyme catalysis is complex.

View Article and Find Full Text PDF

From natural to synthetic: Promoter engineering in yeast expression systems.

Biotechnol Adv

December 2024

BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria. Electronic address:

Synthetic promoters are particularly relevant for application not only in yeast expression systems designed for high-level heterologous protein production but also in other applications such as metabolic engineering, cell biological research, and stage-specific gene expression control. By designing synthetic promoters, researcher can create customized expression systems tailored to specific needs, whether it is maximizing protein production or precisely controlling gene expression at different stages of a process. While recognizing the limitations of endogenous promoters, they also provide important information needed to design synthetic promoters.

View Article and Find Full Text PDF

Urban air quality affects the apple microbiome assembly.

Environ Res

December 2024

Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; Leibniz-Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany. Electronic address:

Exposure to air pollution affects health of all organisms on earth but the impact on the plant microbiome is less understood. Here, we link the Air Quality Index with the dust and apple epiphytic and endophytic microbiome across the city of Graz (Austria). The microbiome of the apple episphere, peel endosphere and pulp endosphere, and surrounding dust was analyzed.

View Article and Find Full Text PDF

Enhancing NA immunogenicity through novel VLP designs.

Vaccine

October 2024

University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria. Electronic address:

Current influenza virus vaccines poorly display key neuraminidase (NA) epitopes and do not robustly induce NA-reactive antibodies; instead, they focus on the induction of hemagglutinin (HA)-reactive antibodies. Next-generation influenza vaccines should be optimized in order to activate NA-reactive B cells and to induce a broadly cross-reactive and protective antibody response. We aimed at enhancing the immunogenicity of the NA on vaccines by two strategies: (i) modifying the HA:NA ratio of the vaccine preparation and (ii) exposing epitopes on the lateral surface or beneath the head of the NA by extending the NA stalk.

View Article and Find Full Text PDF

Into the metabolic wild: Unveiling hidden pathways of microbial metabolism.

Microb Biotechnol

August 2024

Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, Vienna, Austria.

Microbial metabolism has been deeply studied over decades and it is considered to be understood to a great extent. Annotated genome sequences of many microbial species have contributed a lot to generating biochemical knowledge on metabolism. However, researchers still discover novel pathways, unforeseen reactions or unexpected metabolites which contradict to the expected canon of biochemical reactions in living organisms.

View Article and Find Full Text PDF

Non-homologous end joining (NHEJ) and homology-directed repair (HDR) are two mechanisms in filamentous fungi to repair DNA damages. NHEJ is the dominant response pathway to rapidly join DNA double-strand breaks, but often leads to insertions or deletions. On the other hand, HDR is more precise and utilizes a homologous DNA template to restore the damaged sequence.

View Article and Find Full Text PDF

Advances in affinity chromatography now make it possible to analyze immunoglobulin G from plasma and its fractions with a simple chromatographic method. Ligands derived from camelid antibodies have been developed which have affinity to all 4 subclasses of human IgG without a cross reactivity to other immunoglobulins. The commercially available Capture Select FcXL is the basis for a simple method for direct quantification of immunoglobulin G from plasma or from fractions from cold ethanol precipitation.

View Article and Find Full Text PDF

Enzyme Machinery for Bacterial Glucoside Metabolism through a Conserved Non-hydrolytic Pathway.

Angew Chem Int Ed Engl

October 2024

Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria.

The flexible acquisition of substrates from nutrient pools is critical for microbes to prevail in competitive environments. To acquire glucose from diverse glycoside and disaccharide substrates, many free-living and symbiotic bacteria have developed, alongside hydrolysis, a non-hydrolytic pathway comprised of four biochemical steps and conferred from a single glycoside utilization gene locus (GUL). Mechanistically, this pathway integrates within the framework of oxidation and reduction at the glucosyl/glucose C3, the eliminative cleavage of the glycosidic bond and the addition of water in two consecutive lyase-catalyzed reactions.

View Article and Find Full Text PDF

Efficient production of itaconic acid from the single-carbon substrate methanol with engineered Komagataella phaffii.

Biotechnol Biofuels Bioprod

July 2024

Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria.

Background: Amidst the escalating carbon dioxide levels resulting from fossil fuel consumption, there is a pressing need for sustainable, bio-based alternatives to underpin future global economies. Single-carbon feedstocks, derived from CO, represent promising substrates for biotechnological applications. Especially, methanol is gaining prominence for bio-production of commodity chemicals.

View Article and Find Full Text PDF

Purification of secretory IgA monoclonal antibodies enriched fraction directly from cell culture medium using aqueous two-phase systems.

Int J Biol Macromol

August 2024

Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology [ACIB], Muthgasse 18, 1190 Vienna, Austria. Electronic address:

Article Synopsis
  • Secretory immunoglobulin A (sIgA) is being explored for use in therapies related to the gut, with current research focused on its purification from Chinese hamster ovary (CHO) cell cultures.
  • Researchers used aqueous two-phase systems (ATPS) in their study to purify sIgA monoclonal antibodies (mAbs), analyzing factors like pH and PEG concentration to optimize the process.
  • The results indicated that under specific conditions, sIgA mAbs predominantly ended up in the PEG phase, and the method demonstrated potential for efficient and cost-effective manufacturing of sIgA biotherapeutics.
View Article and Find Full Text PDF