10 results match your criteria: "Australian Institute of Marine Science Townsville QLD Australia.[Affiliation]"

The whale shark is found throughout the world's tropical and warm-temperate ocean basins. Despite their broad physical distribution, research on the species has been concentrated at a few aggregation sites. Comparing DNA sequences from sharks at different sites can provide a demographically neutral understanding of the whale shark's global ecology.

View Article and Find Full Text PDF

Native biodiversity is threatened by invasive species in many terrestrial and marine systems, and conservation managers have demonstrated successes by responding with eradication or control programs. Although invasive species are often the direct cause of threat to native species, ecosystems can react in unexpected ways to their removal or reduction. Here, we use theoretical models to predict boom-bust dynamics, where the removal of predatory or competitive pressure from a native herbivore results in oscillatory population dynamics (boom-bust), which can endanger the native species' population in the short term.

View Article and Find Full Text PDF

Non-sex-linked color polymorphism is common in animals and can be maintained in populations via balancing selection or, when under diversifying selection, can promote divergence. Despite their potential importance in ecological interactions and the evolution of biodiversity, their function and the mechanisms by which these polymorphisms are maintained are still poorly understood. Here, we combine field observations with life history and molecular data to compare four sympatric color morphs of the coral reef fish (family Cirrhitidae) in the central Red Sea.

View Article and Find Full Text PDF

The relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in exploited marine ecosystems have been much debated. Examples from a variety of marine systems of exploitation-induced, top-down trophic forcing have led to a general view that human-induced predator perturbations can disrupt entire marine food webs, yet other studies that have found no such evidence provide a counterpoint. Though evidence continues to emerge, an unresolved debate exists regarding both the relative roles of top-down versus bottom-up forcing and the capacity of human exploitation to instigate top-down, community-level effects.

View Article and Find Full Text PDF

Genetic structure within marine species may be driven by local adaptation to their environment, or alternatively by historical processes, such as geographic isolation. The gulfs and seas bordering the Arabian Peninsula offer an ideal setting to examine connectivity patterns in coral reef fishes with respect to environmental gradients and vicariance. The Red Sea is characterized by a unique marine fauna, historical periods of desiccation and isolation, as well as environmental gradients in salinity, temperature, and primary productivity that vary both by latitude and by season.

View Article and Find Full Text PDF

Coral-dinoflagellate symbiosis underpins the evolutionary success of corals reefs. Successful exchange of molecules between the cnidarian host and the Symbiodiniaceae algae enables the mutualistic partnership. The algae translocate photosynthate to their host in exchange for nutrients and shelter.

View Article and Find Full Text PDF

The speed at which species adapt depends partly on the rates of beneficial adaptation generation and how quickly they spread within and among populations. Natural rates of adaptation of corals may not be able to keep pace with climate warming. Several interventions have been proposed to fast-track thermal adaptation, including the intentional translocation of warm-adapted adults or their offspring (assisted gene flow, AGF) and the ex situ crossing of warm-adapted corals with conspecifics from cooler reefs (hybridization or selective breeding) and field deployment of those offspring.

View Article and Find Full Text PDF

In its invasive range in Australia, the European rabbit threatens the persistence of native flora and fauna and damages agricultural production. Understanding its distribution and ecological niche is critical for developing management plans to reduce populations and avoid further biodiversity and economic losses.We developed an ensemble of species distribution models (SDMs) to determine the geographic range limits and habitat suitability of the rabbit in Australia.

View Article and Find Full Text PDF

Ocean acidification (OA) can be detrimental to calcifying marine organisms, with stunting of invertebrate larval development one of the most consistent responses. Effects are usually measured by short-term, within-generation exposure, an approach that does not consider the potential for adaptation. We examined the genetic response to OA of larvae of the tropical sea urchin sp.

View Article and Find Full Text PDF

Diet specificity is likely to be the key predictor of a predator's vulnerability to changing habitat and prey conditions. Understanding the degree to which predatory coral reef fishes adjust or maintain prey choice, in response to declines in coral cover and changes in prey availability, is critical for predicting how they may respond to reef habitat degradation. Here, we use stable isotope analyses to characterize the trophic structure of predator-prey interactions on coral reefs of the Keppel Island Group on the southern Great Barrier Reef, Australia.

View Article and Find Full Text PDF