8 results match your criteria: "Associé au CNRS et aux Universités Paris VI et VII[Affiliation]"
Phys Rev E Stat Nonlin Soft Matter Phys
December 2011
Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, Associé au CNRS et aux Universités Paris VI et VII, 24 Rue Lhomond, F-75231 Paris, France.
We present a numerical study of the magnetic field generated by the Taylor-Green vortex. We show that periodic boundary conditions can be used to mimic realistic boundary conditions by prescribing the symmetries of the velocity and magnetic fields. This gives insight into some problems of central interest for dynamos: the possible effect of velocity fluctuations on the dynamo threshold, and the role of boundary conditions on the threshold and on the geometry of the magnetic field generated by dynamo action.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2011
Laboratoire de Physique Statistique de l'École Normale Supérieure, associé au CNRS et aux Universités Paris VI et VII, Paris, France.
We investigate numerically the dynamics of two-dimensional Euler and ideal magnetohydrodynamics (MHD) flows in systems with a finite number of modes, up to 4096(2), for which several quadratic invariants are preserved by the truncation and the statistical equilibria are known. Initial conditions are the Orszag-Tang vortex with a neutral X point centered on a stagnation point of the velocity field in the large scales. In MHD, we observe that the total energy spectra at intermediate times and intermediate scales correspond to the interactions of eddies and waves, E(T)(k)~k(-3/2).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2011
Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, associé au CNRS et aux Universités Paris VI et VII, 24 Rue Lhomond, F-75231 Paris, France.
The statistical equilibria of the (conservative) dynamics of the Gross-Pitaevskii equation (GPE) with a finite range of spatial Fourier modes are characterized using a new algorithm, based on a stochastically forced Ginzburg-Landau equation (SGLE), that directly generates grand-canonical distributions. The SGLE-generated distributions are validated against finite-temperature GPE-thermalized states and exact (low-temperature) results obtained by steepest descent on the (grand-canonical) partition function. A standard finite-temperature second-order λ transition is exhibited.
View Article and Find Full Text PDFPhys Rev Lett
March 2011
Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, associé au CNRS et aux Universités Paris VI et VII, 24 Rue Lhomond, 75231 Paris, France.
A new mechanism of thermalization involving a direct energy cascade is obtained in the truncated Gross-Pitaevskii dynamics. A long transient with partial thermalization at small scales is observed before the system reaches equilibrium. Vortices are found to disappear as a prelude to final thermalization.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2009
Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, associé au CNRS et aux Universités Paris VI et VII, 24 Rue Lhomond, 75231 Paris, France.
The dynamics of the truncated Euler equations with helical initial conditions are studied. Transient energy and helicity cascades leading to Kraichnan helical absolute equilibrium at small scales, including a linear scaling of the relative helicity spectrum are obtained. Strong helicity effects are found using initial data concentrated at high wave numbers.
View Article and Find Full Text PDFPhys Rev Lett
December 2005
Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, associé au CNRS et aux Universités, Paris VI et VII, France.
A new transient regime in the relaxation towards absolute equilibrium of the conservative and time-reversible 3D Euler equation with a high-wave-number spectral truncation is characterized. Large-scale dissipative effects, caused by the thermalized modes that spontaneously appear between a transition wave number and the maximum wave number, are calculated using fluctuation dissipation relations. The large-scale dynamics is found to be similar to that of high-Reynolds number Navier-Stokes equations and thus obeys (at least approximately) Kolmogorov scaling.
View Article and Find Full Text PDFNat Struct Mol Biol
May 2005
Laboratoire de Physique Statistique et Département de Biologie, Ecole Normale Supérieure, UMR8550 associé au CNRS et aux Universités Paris VI et VII, Paris, France.
FtsK is a bacterial protein that translocates DNA in order to transport chromosomes within the cell. During translocation, DNA's double-helical structure might cause a relative rotation between FtsK and the DNA. We used a single-molecule technique to quantify this rotation by observing the supercoils induced into the DNA during translocation of an FtsK complex.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2002
Laboratoire de Physique Statistique, Associé au CNRS et aux Universités Paris VI et VII, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France.
Scroll waves are three-dimensional analogs of spiral waves. The linear stability spectrum of untwisted and twisted scroll waves is computed for a two-variable reaction-diffusion model of an excitable medium. Different bands of modes are seen to be unstable in different regions of parameter space.
View Article and Find Full Text PDF