188 results match your criteria: "Asia-Pacific Center for Theoretical Physics[Affiliation]"

Engineering quantum states through light-matter interaction has created a paradigm in condensed-matter physics. A representative example is the Floquet-Bloch state, which is generated by time-periodically driving the Bloch wavefunctions in crystals. Previous attempts to realize such states in condensed-matter systems have been limited by the transient nature of the Floquet states produced by optical pulses, which masks the universal properties of non-equilibrium physics.

View Article and Find Full Text PDF

Chromosomes in the nucleus assemble into hierarchies of 3D domains that, during interphase, share essential features with a knot-free condensed polymer known as the fractal globule (FG). The FG-like chromosome likely affects macromolecular transport, yet its characteristics remain poorly understood. Using computer simulations and scaling analysis, we show that the 3D folding and macromolecular size of the chromosomes determine their transport characteristics.

View Article and Find Full Text PDF

We performed temperature- and doping-dependent high-resolution Raman spectroscopy experiments on YBa_{2}Cu_{3}O_{7-δ} to study B_{1g} phonons. The temperature dependence of the real part of the phonon self-energy shows a distinct kink at T=T_{B1g} above T_{c} due to softening, in addition to the one due to the onset of the superconductivity. T_{B1g} is clearly different from the pseudogap temperature with a maximum in the underdoped region and resembles charge density wave onset temperature, T_{CDW}.

View Article and Find Full Text PDF

Complex network analyses have provided clues to improve power-grid stability with the help of numerical models. The high computational cost of numerical simulations, however, has inhibited the approach, especially when it deals with the dynamic properties of power grids such as frequency synchronization. In this study, we investigate machine learning techniques to estimate the stability of power-grid synchronization.

View Article and Find Full Text PDF

Ultrafast light-matter interactions enable inducing exotic material phases by promoting access to kinetic processes blocked in equilibrium. Despite potential opportunities, actively using nonequilibrium kinetics for material discovery is limited by the poor understanding on intermediate states of driven systems. Here, using single-pulse time-resolved imaging with x-ray free-electron lasers, we found intermediate states of photoexcited bismuth nanoparticles that showed kinetically reversed surface ordering during ultrafast melting.

View Article and Find Full Text PDF

Current-induced control of magnetization in ferromagnets using spin-orbit torque (SOT) has drawn attention as a new mechanism for fast and energy efficient magnetic memory devices. Energy-efficient spintronic devices require a spin-current source with a large SOT efficiency (ξ) and electrical conductivity (σ), and an efficient spin injection across a transparent interface. Herein, single crystals of the van der Waals (vdW) topological semimetal WTe  and vdW ferromagnet Fe GeTe are used to satisfy the requirements in their all-vdW-heterostructure with an atomically sharp interface.

View Article and Find Full Text PDF

Stacking two-dimensional van der Waals (vdW) materials rotated with respect to each other show versatility for studying exotic quantum phenomena. In particular, anisotropic layered materials have great potential for such twistronics applications, providing high tunability. Here, we report anisotropic superconducting order parameters in twisted BiSrCaCuO (Bi-2212) vdW junctions with an atomically clean vdW interface, achieved using the microcleave-and-stack technique.

View Article and Find Full Text PDF

Efficient magnetic control of electronic conduction is at the heart of spintronic functionality for memory and logic applications. Magnets with topological band crossings serve as a good material platform for such control, because their topological band degeneracy can be readily tuned by spin configurations, dramatically modulating electronic conduction. Here we propose that the topological nodal-line degeneracy of spin-polarized bands in magnetic semiconductors induces an extremely large angular response of magnetotransport.

View Article and Find Full Text PDF

The orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment.

View Article and Find Full Text PDF

DNA molecules are atomic-scale information storage molecules that promote reliable information transfer via fault-free repetitions of replications and transcriptions. Remarkable accuracy of compacting a few-meters-long DNA into a micrometer-scale object, and the reverse, makes the chromosome one of the most intriguing structures from both physical and biological viewpoints. However, its three-dimensional (3D) structure remains elusive with challenges in observing native structures of specimens at tens-of-nanometers resolution.

View Article and Find Full Text PDF

A key innovation emerging in complex animals is irreversible somatic differentiation: daughters of a vegetative cell perform a vegetative function as well, thus, forming a somatic lineage that can no longer be directly involved in reproduction. Primitive species use a different strategy: vegetative and reproductive tasks are separated in time rather than in space. Starting from such a strategy, how is it possible to evolve life forms which use some of their cells exclusively for vegetative functions? Here, we develop an evolutionary model of development of a simple multicellular organism and find that three components are necessary for the evolution of irreversible somatic differentiation: (i) costly cell differentiation, (ii) vegetative cells that significantly improve the organism's performance even if present in small numbers, and (iii) large enough organism size.

View Article and Find Full Text PDF

The tug-of-war between the thermoelectric power factor and the figure-of-merit complicates thermoelectric material selection, particularly for mid-to-high temperature thermoelectric materials. Approaches to reduce lattice thermal conductivity while maintaining a high-power factor are crucial in thermoelectric applications. Using strain engineering, we comprehensively investigated the microscopic mechanisms influencing the lattice thermal conductivity in this study.

View Article and Find Full Text PDF

Periodic environmental changes are commonly observed in nature from the amount of daylight to seasonal temperature. These changes usually affect individuals' death or birth rates, dragging the system from its previous stable states. When the fluctuation of abundance is amplified due to such changes, extinction of species may be accelerated.

View Article and Find Full Text PDF

The origin of non-Poissonian or bursty temporal patterns observed in various data sets for human social dynamics has been extensively studied, yet its understanding still remains incomplete. Considering the fact that humans are social beings, a fundamental question arises: Is the bursty human dynamics dominated by individual characteristics or by interaction between individuals? In this paper we address this question by analyzing the Wikipedia edit history to see how spontaneous individual editors are in initiating bursty periods of editing, i.e.

View Article and Find Full Text PDF

It has recently been demonstrated that protected supersymmetry emerges on the boundaries of one-dimensional intrinsically fermionic symmetry protected trivial (SPT) phases. Here we investigate the boundary supersymmetry of one-dimensional fermionic phases beyond SPT phases. Using the connection between Majorana edge modes and real supercharges, we compute, in terms of the bulk phase invariants, the number of protected boundary supercharges.

View Article and Find Full Text PDF

Using first-principles calculations, we predict that the two-dimensional (2D) monolayers of NbP with the buckled honeycomb-like and puckered tetragonal structure can be obtained from the (110) and (001) orientations, respectively, of its bulk crystal structure. The electronic properties of these monolayers are spectacularly different as tetragonal lattice is metallic whereas the honeycomb-like lattice (h-NbP) is a semiconductor and exhibits intrinsic ferroelectricity originating from a rare-hybridization. The shift current bulk photovoltaic effect (BPVE) is systematically investigated in the h-NbP monolayer (1.

View Article and Find Full Text PDF

Unlabelled: Urban green space is thought to contribute to citizen happiness by promoting physical and mental health. Nevertheless, how urban green space and happiness are related across many countries with different socioeconomic conditions has not been explored. By measuring the urban green space score (UGS) from high-resolution satellite imagery of 90 global cities covering 179,168 km and 230 million people in 60 developed countries, we find that the amount of urban green space and GDP are correlated with a nation's happiness level.

View Article and Find Full Text PDF

Superconductivity in the vicinity of a competing electronic order often manifests itself with a superconducting dome, centered at a presumed quantum critical point in the phase diagram. This common feature, found in many unconventional superconductors, has supported a prevalent scenario in which fluctuations or partial melting of a parent order are essential for inducing or enhancing superconductivity. Here we present a contrary example, found in IrTe nanoflakes of which the superconducting dome is identified well inside the parent stripe charge ordering phase in the thickness-dependent phase diagram.

View Article and Find Full Text PDF

Dynamics of complex social systems has often been described in the framework of temporal networks, where links are considered to exist only at the moment of interaction between nodes. Such interaction patterns are not only driven by internal interaction mechanisms, but also affected by environmental changes. To investigate the impact of the environmental changes on the dynamics of temporal networks, we analyze several face-to-face interaction datasets using the multiscale entropy (MSE) method to find that the observed temporal correlations can be categorized according to the environmental similarity of datasets such as classes and break times in schools.

View Article and Find Full Text PDF

Persona2vec: a flexible multi-role representations learning framework for graphs.

PeerJ Comput Sci

March 2021

Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.

Graph embedding techniques, which learn low-dimensional representations of a graph, are achieving state-of-the-art performance in many graph mining tasks. Most existing embedding algorithms assign a single vector to each node, implicitly assuming that a single representation is enough to capture all characteristics of the node. However, across many domains, it is common to observe pervasively overlapping community structure, where most nodes belong to multiple communities, playing different roles depending on the contexts.

View Article and Find Full Text PDF

How sequence populations persist inside bacterial genomes.

Genetics

April 2021

Research Group for Microbial Molecular Evolution, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany.

Compared to their eukaryotic counterparts, bacterial genomes are small and contain extremely tightly packed genes. Repetitive sequences are rare but not completely absent. One of the most common repeat families is REPINs.

View Article and Find Full Text PDF

We discuss the counting of Nambu-Goldstone (NG) modes associated with the spontaneous breaking of higher-form global symmetries. Effective field theories of NG modes are developed based on symmetry-breaking patterns, using a generalized coset construction for higher-form symmetries. We derive a formula of the number of gapless NG modes, which involves expectation values of the commutators of conserved charges, possibly of different degrees.

View Article and Find Full Text PDF

We construct the tensionless limit of bosonic string theory in terms of a family of worldsheets with increasing acceleration and show that the null string emerges in the limit of infinite acceleration when the Rindler horizon is hit. We discover a novel phenomenon we call null string complementarity, which gives two distinct observer-dependent pictures of the emergence of open string physics from closed strings in the tensionless limit. The closed string vacuum as observed by the inertial worldsheet turns into a D instanton in the tensionless limit, while in the complementary picture from the accelerated worldsheet, one sees the emergence of a D-25 brane.

View Article and Find Full Text PDF

The structures as building blocks for designing functional nanomaterials have fueled the development of versatile nanoprobes to understand local structures of noncrystalline specimens. Progress in analyzing structures of individual specimens with atomic scale accuracy has been notable recently. In most cases, however, only a limited number of specimens are inspected lacking statistics to represent the systems with structural inhomogeneity.

View Article and Find Full Text PDF

We construct new many-body invariants for 2D Chern and 3D chiral hinge insulators characterizing quantized pumping of bulk dipole and quadrupole moments. The many-body invariants are written entirely in terms of many-body ground state wave functions on a torus geometry with twisted boundary conditions and a set of unitary operators. We present a number of supporting arguments for the invariants via topological field theory interpretation, adiabatic pumping argument, and direct mapping to free-fermion band indices.

View Article and Find Full Text PDF