A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session416601lubfujmiscbe193c6ssn64badm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Arid Land Agricultural Research Center[... Publications | LitMetric

317 results match your criteria: "Arid Land Agricultural Research Center[Affiliation]"

Combined Treatment Methods for Removal of Antibiotics from Beef Wastewater.

ACS Omega

December 2024

U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, Nebraska 68933, United States.

Use of antibiotics is common practice in agriculture; however, they can be released into the environment, potentially causing antimicrobial resistance. Naturally mined diatomaceous earth with bentonite was tested as a remediation material for tylosin, chlortetracycline, and ceftiofur in wastewater from a beef cattle feedlot. Langmuir binding affinity in 10 mM sodium phosphate buffer at pH 6.

View Article and Find Full Text PDF

Phenotyping cotton leaf chlorophyll via hyperspectral reflectance sensing, spectral vegetation indices, and machine learning.

Front Plant Sci

November 2024

United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid-Land Agricultural Research Center, Maricopa, AZ, United States.

Cotton ( L.) leaf chlorophyll (Chl) has been targeted as a phenotype for breeding selection to improve cotton tolerance to environmental stress. However, high-throughput phenotyping methods based on hyperspectral reflectance sensing are needed to rapidly screen cultivars for chlorophyll in the field.

View Article and Find Full Text PDF

, , and are emerging preharvest maize ear rot pathogens in Ethiopia.

Plant Dis

December 2024

USDA ARS, Aflatoxin Control Laboratory, 416 West Congress Street, Tucson, Arizona, United States, 85701;

Fusarium ear rot (FER) and Gibberella ear rot (GER) caused by Fusarium species are major diseases affecting maize production in Ethiopia. In addition to reducing quality and yield, these fungi can produce mycotoxins that contaminate maize kernels and, thereby, pose health hazards to humans and livestock. A survey was conducted in 10 administrative zones of Ethiopia within the major maize-growing regions of the country to identify the species of Fusarium associated with ear rot.

View Article and Find Full Text PDF

Determinants of antimicrobial resistance in biosolids: A systematic review, database, and meta-analysis.

Sci Total Environ

December 2024

The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA. Electronic address:

Biosolids can provide a nutrient rich soil amendment, particularly for poor soils and semi-arid or drought-prone areas. However, there are concerns that sludge and biosolids could be a source of propagation and exposure to AMR determinants such as antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). To inform risk assessment efforts, a systematic literature review was performed to build a comprehensive spreadsheet database of ARB and ARG concentrations in biosolids (and some sludges specified as intended for land application), along with 69 other quantitative and qualitative meta-data fields from 68 published studies describing sampling information and processing methods that can be used for modeling purposes.

View Article and Find Full Text PDF

Proteomic and Targeted Lipidomic Analyses of Fluid and Rigid Rubber Particle Membrane Domains in Guayule.

Plants (Basel)

October 2024

Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA.

Rubber (-1,4-polyisoprene) is produced in cytosolic unilamellar vesicles called rubber particles (RPs), and the protein complex responsible for this synthesis, the rubber transferase (RTase), is embedded in, or tethered to, the membranes of these RPs. Solubilized enzyme activity is very difficult to achieve because the polymerization of highly hydrophilic substrates into hydrophobic polymers requires a polar/non-polar interface and a hydrophobic compartment. Using guayule () as a model rubber-producing species, we optimized methods to isolate RP unilamellear membranes and then a subset of membrane microdomains (detergent-resistant membranes) likely to contain protein complexes such as RTase.

View Article and Find Full Text PDF

Female contact sex pheromone recognition in the German cockroach (Blattella germanica) is mediated by two male antennae-enriched sensory neuron membrane proteins.

Pest Manag Sci

November 2024

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China.

Background: The German cockroach Blattella germanica is a notorious urban health pest that has developed resistance to multiple pesticides. Thus, novel non-lethal pest control agents are urgently needed. Olfaction interference via disruption of sex pheromone recognition-related genes offers a promising approach.

View Article and Find Full Text PDF
Article Synopsis
  • Transgenic crops that produce Cry proteins, derived from the bacterium Bt, are widely used to combat key crop pests like the noctuid moth, but resistance to these proteins, particularly Cry1Ac, has been developing in pest populations.
  • A study investigated the genetic basis of this field-evolved resistance in moth populations from various locations in the southern U.S. and found extensive gene mixing among them.
  • Unlike previous lab findings, the resistance was linked to an increase in a cluster of nine trypsin genes rather than specific mutations in known resistance genes, indicating that there may be multiple genetic factors at play in the development of resistance.
View Article and Find Full Text PDF

Efficient and affordable plant phenotyping methods are an essential response to global climatic pressures. This study demonstrates the continued potential of consumer-grade photography to capture plant phenotypic traits in turfgrass and derive new calculations. Yet the effects of image corrections on individual calculations are often unreported.

View Article and Find Full Text PDF
Article Synopsis
  • The adsorption process is a cost-effective method for removing PFAS from irrigation water, but syringe filtration can lead to PFAS retention, skewing results.
  • In a study, three common PFAS were tested for recovery on different syringe filters, revealing varying recovery rates, with MCE filters showing the best performance.
  • Results indicated that PFAS recovery improved with increased filtration volume, emphasizing the importance of filter choice in accurately measuring the effectiveness of PFAS removal in lab settings.
View Article and Find Full Text PDF

The takeout (TO) gene family impacts diverse physiological and behavioral functions in insects, yet specific olfactory-associated roles for the family have yet to be fully elucidated. To provide insights into TO function in rice planthoppers, the genomes of three rice planthoppers (white-backed planthopper, brown planthopper and small brown planthopper) were searched for TO homologs and their degree of conservation assessed via chromosomal localization, exon-intron boundaries, phylogenetic relationships and protein domains/motifs. We performed a tissue-specific expression analysis of the 20 TO genes in the white-backed planthopper (WBPH, Sogatella furcifera) and found that SfTO17 is enriched in adult antennae.

View Article and Find Full Text PDF

A spray-induced gene silencing strategy for Spodoptera frugiperda oviposition inhibition using nanomaterial-encapsulated dsEcR.

Int J Biol Macromol

November 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.

Although RNAi-based pest management holds great potential as an alternative to traditional chemical control, its efficiency is restricted by dsRNA instability and limited cellular uptake. Using nanomaterials to facilitate dsRNA delivery has shown promise in solving these challenges. In this study, we firstly used RNAi to investigate the role of the juvenile hormone and ecdysteroid signaling pathways genes in reproduction of Spodoptera frugiperda, the fall armyworm.

View Article and Find Full Text PDF

Background: Selective tools, including selective insecticides and transgenic cotton, have been crucial in reducing insecticide usage within the integrated pest management (IPM) plan for Arizona cotton. To guide growers effectively, cotton field trials evaluated the effects of the novel insecticides, isocycloseram and afidopyropen against our primary pests, Bemisia argentifolii and Lygus hesperus, and their impacts on nontarget arthropods, including key predators: Collops spp., Orius tristicolor, Geocoris spp.

View Article and Find Full Text PDF

The insecticidal crystalline (Cry) and vegetative insecticidal (Vip) proteins derived from Bacillus thuringiensis (Bt) are used globally to manage insect pests, including the cotton bollworm, Helicoverpa armigera, one of the world's most damaging agricultural pests. Cry proteins bind to the ATP-binding cassette transporter C2 (ABCC2) receptor on the membrane surface of larval midgut cells, resulting in Cry toxin pores, and ultimately leading to cell swelling and/or lysis. Insect aquaporin (AQP) proteins within the membranes of larval midgut cells are proposed to allow the rapid influx of water into enterocytes following the osmotic imbalance triggered by the formation of Cry toxin pores.

View Article and Find Full Text PDF

The use of reclaimed water from wastewater treatment plants for irrigation has a risk of introducing micropollutants such as microplastics (MPs) and antimicrobials (AMs) into the agroecosystem. This study was conducted to investigate the effects of single and combined treatment of 0.1 % polyamide (PA ∼15 μm), and varying sulfamethoxazole (SMX) levels 0, 10, 50, and 150 mg/L on rice seedlings (Oryza sativa L.

View Article and Find Full Text PDF

Understanding insect dispersal helps us predict the spread of insect pests and their natural enemies. Dispersal can be studied by marking, releasing, and recapturing insects, known as mark-release-recapture (MRR). MRR techniques should be convenient, economical, and persistent.

View Article and Find Full Text PDF

Drought stress substantially impacts crop physiology resulting in alteration of growth and productivity. Understanding the genetic and molecular crosstalk between stress responses and agronomically important traits such as fibre yield is particularly complicated in the allopolyploid species, upland cotton (Gossypium hirsutum), due to reduced sequence variability between A and D subgenomes. To better understand how drought stress impacts yield, the transcriptomes of 22 genetically and phenotypically diverse upland cotton accessions grown under well-watered and water-limited conditions in the Arizona low desert were sequenced.

View Article and Find Full Text PDF

Sesame, L., is one of the oldest domesticated crops used for its oil and protein in many parts of the world. To build genomic resources for sesame that could be used to improve sesame productivity and responses to stresses, a USDA sesame germplasm collection of 501 accessions originating from 36 countries was used in this study.

View Article and Find Full Text PDF

Graphene-coated sand for enhanced water reuse: Impact on water quality and chemicals of emerging concern.

Sci Total Environ

October 2024

Department of Civil Engineering, University of Mississippi, Carrier Hall, University, MS 38677, USA. Electronic address:

This paper investigates the potential of graphene-coated sand (GCS) as an advanced filtration medium for improving water quality and mitigating chemicals of emerging concern (CECs) in treated municipal wastewater, aiming to enhance water reuse. The study utilizes three types of sand (Ottawa, masonry, and concrete) coated with graphene to assess the impact of surface morphology, particle shape, and chemical composition on coating and filtration efficiency. Additionally, sand coated with graphene and activated graphene coated sand were both tested to understand the effect of coating and activation on the filtration process.

View Article and Find Full Text PDF

A one health approach for monitoring antimicrobial resistance: developing a national freshwater pilot effort.

Front Water

May 2024

United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States.

Antimicrobial resistance (AMR) is a world-wide public health threat that is projected to lead to 10 million annual deaths globally by 2050. The AMR public health issue has led to the development of action plans to combat AMR, including improved antimicrobial stewardship, development of new antimicrobials, and advanced monitoring. The National Antimicrobial Resistance Monitoring System (NARMS) led by the United States (U.

View Article and Find Full Text PDF
Article Synopsis
  • - The COVID-19 pandemic emphasized the importance of using quantitative microbial risk assessment (QMRA) for enhancing public health protection through modeling infectious disease risks.
  • - A recent workshop gathered 41 QMRA experts to outline crucial research priorities such as improving methods, harmonizing environmental monitoring, and integrating different scientific approaches.
  • - Key recommendations include building a collaborative research community, enhancing data collection efforts, and ensuring sustainable funding to support the advancement of QMRA for global health policies.
View Article and Find Full Text PDF

The melanin pigment gene mediates body pigmentation and courtship behaviour in the German cockroach .

Bull Entomol Res

April 2024

National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.

Genes involved in melanin production directly impact insect pigmentation and can affect diverse physiology and behaviours. The role these genes have on sex behaviour, however, is unclear. In the present study, the crucial melanin pigment gene was functionally characterised in an urban pest, the German cockroach, .

View Article and Find Full Text PDF

Identification of methods for the standardized assessment of bacterial pathogens and antimicrobial resistance (AMR) in environmental water can improve the quality of monitoring and data collected, support global surveillance efforts, and enhance the understanding of environmental water sources. We conducted a systematic review to assemble and synthesize available literature that identified methods for assessment of prevalence and abundance of bacterial fecal indicators and pathogens in water for the purposes of monitoring bacterial pathogens and AMR. After screening for quality, 175 unique publications were identified from 15 databases, and data were extracted for analysis.

View Article and Find Full Text PDF

Knockdown of MAPK p38-linked genes increases the susceptibility of Chilo suppressalis larvae to various transgenic Bt rice lines.

Int J Biol Macromol

May 2024

National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States.

Bacillus thuringiensis (Bt) toxins have provided exceptional control of agricultural insect pests, however, over reliance on the proteins would potentially contribute to the development of field tolerance. Developing new sustainable insect pest control methods that target the mechanisms underlying Bt tolerance can potentially support the Bt control paradigm while also providing insights into basic insect physiology. The MAPK p38 pathway is strongly associated with Bt tolerance in Chilo suppressalis, a major pest of rice.

View Article and Find Full Text PDF

Background: Adelphocoris suturalis is a destructive pest that attacks > 270 plants, including cotton, maize, soybean, and fruit trees. Adelphocoris suturalis can cause tremendous crop losses when the density exceeds economic thresholds, but because it can be both phytophagous and zoophytophagous it can serve as a natural enemy of other pests when the density is below the economic threshold. Effective control of its population is beneficial for maximizing yield and profits.

View Article and Find Full Text PDF

Nanoparticle-delivered RNAi-based pesticide target screening for the rice pest white-backed planthopper and risk assessment for a natural predator.

Sci Total Environ

May 2024

State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China. Electronic address:

Vacuolar-type (H)-ATPase (vATPase) is a conserved multi-subunit eukaryotic enzyme composed of 14 subunits that form a functional complex consisting of an ATP-hydrolytic domain (V1) and a proton-translocation domain (V0). ATP hydrolysis and subsequent H translocation rely heavily on a fully assembled V1/V0 complex. Since vATPase is crucial for insect survival, it is a viable molecular target for pest control.

View Article and Find Full Text PDF