555 results match your criteria: "Aragon Institute of Engineering Research i3A[Affiliation]"

Polydopamine Interfacial Coating for Stable Tumor-on-a-Chip Models: Application for Pancreatic Ductal Adenocarcinoma.

Biomacromolecules

August 2024

Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering and Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain.

Addressing current challenges in solid tumor research requires advanced in vitro three-dimensional (3D) cellular models that replicate the inherently 3D architecture and microenvironment of tumor tissue, including the extracellular matrix (ECM). However, tumor cells exert mechanical forces that can disrupt the physical integrity of the matrix in long-term 3D culture. Therefore, it is necessary to find the optimal balance between cellular forces and the preservation of matrix integrity.

View Article and Find Full Text PDF

An agent-based method to estimate 3D cell migration trajectories from 2D measurements: Quantifying and comparing T vs CAR-T 3D cell migration.

Comput Methods Programs Biomed

October 2024

Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain. Electronic address:

Background And Objective: Immune cell migration is one of the key features that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors. Chimeric antigen receptor (CAR) T-cell therapy is a novel strategy in the battle against various cancers. It has been successful in treating hematological tumors, yet it still faces many challenges in the case of solid tumors.

View Article and Find Full Text PDF

Nanotechnology has been increasingly used in plant sciences, with engineered nanoparticles showing promising results as fertilizers or pesticides. The present study compared the effects in the foliar application of Se nanoparticles (SeNPs) or sodium selenite-Se(IV) on rice seedlings. The degree of plant growth, photosynthetic pigment content, and concentrations of Se, Na, Mg, K, Ca, Mn, Co, Cu, Zn, As, Cd, and Pb were evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Marfan syndrome (MFS) is linked to mutations in the FBN1 gene, affecting fibrillin-1, a protein crucial for bone structure and growth factor regulation, leading to skeletal issues like low bone density and long bone overgrowth.
  • A study used a mouse model of MFS to analyze various aspects of bone structure and behavior, including curvature, composition, and mechanical properties across different ages of mice.
  • Results indicated that while MFS mice exhibited traits consistent with the syndrome, such as long bone overgrowth and reduced trabecular thickness, their overall mechanical and structural properties were similar to control mice, with some differences in bone matrix crystallinity and porosity.
View Article and Find Full Text PDF

Impact of geometric and hemodynamic changes on a mechanobiological model of atherosclerosis.

Comput Methods Programs Biomed

September 2024

Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain; Public University of Navarra (UPNA), Pamplona, Spain. Electronic address:

Background And Objective: In this work, the analysis of the importance of hemodynamic updates on a mechanobiological model of atheroma plaque formation is proposed.

Methods: For that, we use an idealized and axisymmetric model of carotid artery. In addition, the behavior of endothelial cells depending on hemodynamical changes is analyzed too.

View Article and Find Full Text PDF

Introduction: In an effort of gaining a better understanding of the lens mechanics, lenses samples are often used. Yet, tissue might undergo important postmortem changes depending on the unavoidable preservation method employed. The purpose of this study was to assess how various storage conditions and the removal of the lens capsule affect the mechanical properties of porcine lens samples.

View Article and Find Full Text PDF

Agronomic biofortification using selenium nanoparticles (SeNPs) shows potential for addressing selenium deficiency but further research on SeNPs-plants interaction is required before it can be effectively used to improve nutritional quality. In this work, single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) was used for tracing isotopically labeled SeNPs (SeNPs) in Oryza sativa L. tissues.

View Article and Find Full Text PDF

The objective for this study is to advance the development of a specialized biomaterial that can effectively facilitate the regeneration of adipose tissue. In prior studies, the assessment of collagen (Col), elastin (Ela), and fibrin (Fib) unary scaffolds has been conducted. However, it is important to note that native adipose tissue is comprised of a diverse array of extracellular matrix (ECM) constituents.

View Article and Find Full Text PDF
Article Synopsis
  • Microfluidics technology is improving in vitro simulations of human tissues, particularly through organ-on-a-chip (OoC) devices that mimic the in vivo environment.
  • A major challenge is the use of inert materials that prevent complete interaction between cells and nutrients, affecting cell responses negatively.
  • The study focuses on designing two microfluidic devices to enhance cell-cell and cell-matrix interactions, featuring optimized pore sizes to reduce inert material interference and improve biological relevance.
View Article and Find Full Text PDF

Purpose: Computational models can help clinicians plan surgeries by accounting for factors such as mechanical imbalances or testing different surgical techniques beforehand. Different levels of modeling complexity are found in the literature, and it is still not clear what aspects should be included to obtain accurate results in finite-element (FE) corneal models. This work presents a methodology to narrow down minimal requirements of modeling features to report clinical data for a refractive intervention such as PRK.

View Article and Find Full Text PDF

Childhood cancer incidence, especially in high-income countries, has led to a focus on preserving fertility in this vulnerable population. The common treatments, such as radiation and certain chemotherapeutic agents, though effective, pose a risk to fertility. For adult women, established techniques like embryo and egg freezing are standard, requiring ovarian stimulation.

View Article and Find Full Text PDF

Crystalline lens overshooting refers to a situation in which the lens momentarily shifts too much from its typical location immediately after stopping the rotational movement of the eye globe. This movement can be observed using an optical technique called Purkinje imaging. In this work, an experimental setup was designed to reproduce this effect using a fresh porcine eye.

View Article and Find Full Text PDF

Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models.

Int J Mol Sci

April 2024

Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain.

Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components.

View Article and Find Full Text PDF

Exploring the muscle architecture effect on the mechanical behaviour of mouse rotator cuff muscles.

Comput Biol Med

May 2024

Aragón Institute of Engineering Research (i3A), Universidad de Zaragoza, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain. Electronic address:

Incorporating detailed muscle architecture aspects into computational models can enable researchers to gain deeper insights into the complexity of muscle function, movement, and performance. In this study, we employed histological, multiphoton image processing, and finite element method techniques to characterise the mechanical dependency on the architectural behaviour of supraspinatus and infraspinatus mouse muscles. While mechanical tests revealed a stiffer passive behaviour in the supraspinatus muscle, the collagen content was found to be two times higher in the infraspinatus.

View Article and Find Full Text PDF

Background: Mental health conditions have become a substantial cause of disability worldwide, resulting in economic burden and strain on the public health system. Incorporating cognitive and physiological biomarkers using noninvasive sensors combined with self-reported questionnaires can provide a more accurate characterization of the individual's well-being. Biomarkers such as heart rate variability or those extracted from the electrodermal activity signal are commonly considered as indices of autonomic nervous system functioning, providing objective indicators of stress response.

View Article and Find Full Text PDF

Nowadays, the truffle aroma attribute is not included as a quality parameter in the current recommendation that explains the truffle quality (UNECE standard 53 FFV3) and establishes the truffle commercial categories. However, the aroma is the main reason why truffles are worldwide appreciated. Indeed, more than 30 aromatic molecules compose it, and this is the reason why the human evaluation and identification of these odorants, without previous training, is quite subjective.

View Article and Find Full Text PDF

The Effect of Lens Shape, Zonular Insertion and Finite Element Model on Simulated Shape Change of the Eye Lens.

Ann Biomed Eng

August 2024

Faculty of Health Education Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford Campus, Chelmsford, UK.

The process of lens shape change in the eye to alter focussing (accommodation) is still not fully understood. Modelling approaches have been used to complement experimental findings in order to determine how constituents in the accommodative process influence the shape change of the lens. An unexplored factor in modelling is the role of the modelling software on the results of simulated shape change.

View Article and Find Full Text PDF

Biomimetic 3D models emerged some decades ago to address 2D cell culture limitations in the field of replicating biological phenomena, structures or functions found in nature. The fabrication of hydrogels for cancer disease research enables the study of cell processes including growth, proliferation and migration and their 3D design is based on the encapsulation of tumoral cells within a tunable matrix. In this work, a platform of gelatin methacrylamide (GelMA)-based photocrosslinked scaffolds with embedded colorectal (HCT-116) or pancreatic (MIA PaCa-2) cancer cells is presented.

View Article and Find Full Text PDF

Tuneable hydrogel patterns in pillarless microfluidic devices.

Lab Chip

March 2024

Tissue Microenvironment (TME), Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.

Organ-on-chip (OOC) technology has recently emerged as a powerful tool to mimic physiological or pathophysiological conditions through cell culture in microfluidic devices. One of its main goals is bypassing animal testing and encouraging more personalized medicine. The recent incorporation of hydrogels as 3D scaffolds into microfluidic devices has changed biomedical research since they provide a biomimetic extracellular matrix to recreate tissue architectures.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is associated with the progression of cardiovascular diseases, arrhythmias, and sudden cardiac death (SCD). However, the acute impacts of OSA and its consequences on heart function are not yet fully elucidated. We hypothesized that desaturation events acutely destabilize ventricular repolarization, and the presence of accompanying arousals magnifies this destabilization.

View Article and Find Full Text PDF

Physico-chemical characterization of the tumour microenvironment of pancreatic ductal adenocarcinoma.

Eur J Cell Biol

June 2024

Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain; Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon, Spain.

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy that accounts for more than 90% of pancreatic cancer diagnoses. Our research is focused on the physico-chemical properties of the tumour microenvironment (TME), including its tumoural extracellular matrix (tECM), as they may have an important impact on the success of cancer therapies. PDAC xenografts and their decellularized tECM offer a great material source for research in terms of biomimicry with the original human tumour.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly malignant brain tumour characterised by limited treatment options and poor prognosis. The tumour microenvironment, particularly the central hypoxic region of the tumour, is known to play a pivotal role in GBM progression. Cells within this region adapt to hypoxia by stabilising transcription factor HIF1-α, which promotes cell proliferation, dedifferentiation and chemoresistance.

View Article and Find Full Text PDF

In Vitro Growth of Human Follicles: Current and Future Perspectives.

Int J Mol Sci

January 2024

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

Ovarian tissue cryopreservation is gaining importance as a successful method to restore fertility to girls and young women at high risk of sterility. However, there are concerns regarding the safety of transplantation after ovarian tissue cryopreservation due to the high risk of reintroducing cancer cells and causing disease recurrence. In these cases, the development of culture systems that support oocyte development from the primordial follicle stage is required.

View Article and Find Full Text PDF

Experimentally-guided in silico design of engineered heart tissues to improve cardiac electrical function after myocardial infarction.

Comput Biol Med

March 2024

Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Aragón, Spain; CIBER-BBN, ISCIII, Madrid, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragón, Spain. Electronic address:

Engineered heart tissues (EHTs) built from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) showed promising results for cardiac function restoration following myocardial infarction. Nevertheless, human iPSC-CMs have longer action potential and lower cell-to-cell coupling than adult-like CMs. These immature electrophysiological properties favor arrhythmias due to the generation of electrophysiological gradients when hiPSC-CMs are injected in the cardiac tissue.

View Article and Find Full Text PDF

Improving early detection of keratoconus by Non Contact Tonometry. A computational study and new biomarkers proposal.

J Mech Behav Biomed Mater

April 2024

Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomecánica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain.

Keratoconus is a progressive ocular disorder affecting the corneal tissue, leading to irregular astigmatism and decreased visual acuity. The architectural organization of corneal tissue is altered in keratoconus, however, data from ex vivo testing of biomechanical properties of keratoconic corneas are limited and it is unclear how their results relate to true mechanical properties in vivo. This study explores the mechanical properties of keratoconic corneas through numerical simulations of non-contact tonometry (NCT) reproducing the clinical test of the Corvis ST device.

View Article and Find Full Text PDF