3 results match your criteria: "Aquatic Ecosystem Research University of Duisburg-Essen Essen Germany.[Affiliation]"

Article Synopsis
  • Humans have significantly altered river networks, leading to changes in habitat quality, migration barriers, and pollution, which affect aquatic life and restoration efforts.
  • This study focused on the genetic structure of two pollution-tolerant isopod species in the Emscher catchment in Germany, revealing a strong metapopulation structure with isolated populations and high genetic diversity.
  • The findings indicate that while some migration barriers exist, other factors such as adaptation and species interactions also influence genetic structure, highlighting the need for detailed genetic analysis in environmental studies.
View Article and Find Full Text PDF

Water flow in river networks is frequently regulated by man-made in-stream barriers. These obstacles can hinder dispersal of aquatic organisms and isolate populations leading to the loss of genetic diversity. Although millions of small in-stream barriers exist worldwide, their impact on dispersal of macroinvertebrates remains unclear.

View Article and Find Full Text PDF

DNA barcoding utilizes short standardized DNA sequences to identify species and is increasingly used in biodiversity assessments. The technique has unveiled an unforeseeably high number of morphologically cryptic species. However, if speciation has occurred relatively recently and rapidly, the use of single gene markers, and especially the exclusive use of mitochondrial markers, will presumably fail in delimitating species.

View Article and Find Full Text PDF