10 results match your criteria: "An De College[Affiliation]"

Influence of double-layer filling structure on nitrogen removal and internal microbial distribution in bioretention cells.

J Environ Manage

August 2023

Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an University of Architecture and Technology and University of South Australia, An De College, Xi'an, 710055, China.

The nitrogen removal effect of traditional bioretention cells on runoff rainwater is not stable. The nitrogen removal effect of bioretention cells can be improved by setting up a layered filling structure, but the effect of changes in filling structure on the nitrogen removal process and microbial community characteristics is still unclear. Two types of porosity fillers were set up in the experiment, and a homogeneous bioretention cell and three bioretention cells with layered fillers were constructed by changing the depth range of the upper and lower layers to analyze the influence of the pore variation of different depth fillers on the nitrogen removal process and microbial community characteristics.

View Article and Find Full Text PDF

Nitrogen transfer and transformation in bioretention cells under low temperature conditions.

Sci Total Environ

May 2023

Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an University of Architecture and Technology and University of South Australia, An De College, Xi'an 710055, China.

The nitrogen removal effect of traditional bioretention cells is generally poor under low temperature conditions, with significant levels of fluctuation and leaching often reported. Therefore, the migration characteristics of nitrogen were explored in bioretention cells under low temperature conditions, with the aim of improving the nitrogen removal effect. Four groups of modified collapsible loess bioretention cells were constructed and operated at 1, 5, 10 and 25 °C.

View Article and Find Full Text PDF

Nitrogen reduction by aerobic denitrifying fungi isolated from reservoirs using biodegradation materials for electron donor: Capability and adaptability in the lower C/N raw water treatment.

Sci Total Environ

March 2023

Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.

Biological denitrification was considered an efficient and environmentally friendly way to remove the nitrogen in the water body. However, biological denitrification showed poor nitrogen removal performance due to the lack of electron donors in the low C/N water. In this study, three novel aerobic denitrifying fungi (Trichoderma sp.

View Article and Find Full Text PDF

Effects of freeze-thaw cycles on nutrient removal from bioretention cells.

J Environ Manage

January 2023

Shanghai Yijing Architectural Design Co., Ltd. Xi'an Branch, Baisha Road, Yanta District No.8, Xi'an 710055, China.

There have been numerous summaries of the runoff purification characteristics of bioretention cells in warm climates. However, little has been done on the effects of freeze-thaw cycles (FTCs) that frequently occur in cold regions on bioretention cell performance. Three experimental columns were constructed to simulate the operation of the bioretention cell under the FTCs.

View Article and Find Full Text PDF

A review on anaerobic membrane bioreactors for enhanced valorization of urban organic wastes: Achievements, limitations, energy balance and future perspectives.

Sci Total Environ

May 2022

Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan. Electronic address:

Article Synopsis
  • Sustainable urban development faces challenges from energy crises and organic waste generation, highlighting the need for advanced waste management techniques that reduce greenhouse gas emissions and enhance resource recovery.
  • The anaerobic membrane bioreactor (AnMBR) process emerges as an effective method for converting urban organic wastes like food and sludge into valuable resources, although its research status is still lacking in comprehensive analysis.
  • This review outlines key areas including AnMBR's treatment performance, membrane fouling issues, energy balance, and future outlook, proposing a framework for utilizing various organic waste types to promote sustainable waste management and economic-environmental benefits.
View Article and Find Full Text PDF

Multi-faceted influences of biochar addition on swine manure digestion under tetracycline antibiotic pressure.

Bioresour Technol

February 2022

Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China. Electronic address:

This study explored the influence of biochar (BC) on anaerobic digestion (AD) of swine manure under various tetracycline (TC) pressures. It was found that both low (0.5 mg/L) and high (50 mg/L) TC pressures inhibited AD performance, while BC mitigated it in multi-facets.

View Article and Find Full Text PDF

When dewatered swine manure-derived biochar meets swine wastewater in anaerobic digestion: A win-win scenario towards highly efficient energy recovery and antibiotic resistance genes attenuation for swine manure management.

Sci Total Environ

January 2022

Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China. Electronic address:

This work explored the feasibility of dewatered swine manure-derived biochar (DSMB) as an additive to facilitate anaerobic digestion (AD) of swine wastewater for energy recovery and antibiotic resistance genes (ARG) attenuation enhancements. With 20 g/L DSMB assistance, the methanogenic lag time of swine wastewater was shortened by 17.4-21.

View Article and Find Full Text PDF

Removal characteristics of heavy metal ions in rainwater runoff by bioretention cell modified with biochar.

Environ Technol

July 2021

Qinghai Building and Materials Research Academy Co., Ltd, Xining City, People's Republic of China.

As a form of pollution source control and a low-impact development measure, bioretention is a convenient, economical, and effective method for the removal of heavy metals from stormwater runoff, which can adapt to the randomness and uncontrollability of non-point source pollution. However, few studies have assessed the performance of bioretention in the simultaneous removal of multiple heavy metals and the impact of heavy metal migration on the bioretention life cycle. In this study, the removal rates of various heavy metals: copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd), were enhanced using a biochar modified bioretention cell, as compared to the traditional sandy soil bioretention process.

View Article and Find Full Text PDF

In recent years, there have been a number of studies on bioretention during hot summer, with only few studies reported during low-temperature winters. The application of bioretention in cold areas still lacks effective guidance. In this study, runoff simulation experiments were conducted to explore the influence of wood chips filler and water treatment residue on the removal of runoff pollutants under different packing gradations and low temperature conditions.

View Article and Find Full Text PDF

In the current research, a novel bioreactor composed of porous polymer carriers and iron-carbon (PPC@FeC) was established through bacterial immobilized technology. The influence of key factors was studied on the nitrate removal performance of the PPC@FeC bioreactor. The experimental results showed that the highest removal rate of nitrate (7.

View Article and Find Full Text PDF