742 results match your criteria: "Amirkabir University of Technology. Tehran[Affiliation]"

The role of MgO nanoparticles on the corrosion resistance of hot-dip Al-Zn coating.

Heliyon

January 2025

Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O. Box 15875-4413, Tehran, Iran.

This study investigates the impact of MgO nanoparticles (0, 0.1, 0.5, and 1 wt%) on the corrosion behavior of hot-dipped galvalume (Zn-55Al-1.

View Article and Find Full Text PDF

Tiny machine learning (TinyML) and edge intelligence have emerged as pivotal paradigms for enabling machine learning on resource-constrained devices situated at the extreme edge of networks. In this paper, we explore the transformative potential of TinyML in facilitating pervasive, low-power cardiovascular monitoring and real-time analytics for patients with cardiac anomalies, leveraging wearable devices as the primary interface. To begin with, we provide an overview of TinyML software and hardware enablers, accompanied by an examination of networking solutions such as Low-power Wide area network (LPWAN) that facilitate the seamless deployment of TinyML frameworks.

View Article and Find Full Text PDF

This study presents a novel, eco-friendly method for removing methyldiethanolamine (MDEA) from wastewater, addressing its environmental impact and elevated chemical oxygen demand (COD) from gas refineries. We employed two wetland plants, Phragmites australis and Typha latifolia, utilizing a hydroponics approach to assess MDEA removal efficiency. Wastewater samples from the Ilam gas refinery in Iran were tested at varying initial concentrations (50 to 1600 ppm) over three consecutive 7-day periods, with a 1-day rest interval.

View Article and Find Full Text PDF

This study aims to investigate the effects of adding nano-hydroxyapatite (nHA) to electrospun polycaprolactone (PCL) membranes for use in dental root regeneration. Porous membranes containing varying amounts of nHA (0, 1, 1.5, and 2.

View Article and Find Full Text PDF

In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach.

View Article and Find Full Text PDF

Deception detection is a critical aspect across various domains. Integrating advanced signal processing techniques, particularly in neuroscientific studies, has opened new avenues for exploring deception at a deeper level. This study uses electroencephalogram (EEG) signals from a balanced cohort of 22 participants, consisting of both males and females, aged between 22 and 29, engaged in a visual task for instructed deception.

View Article and Find Full Text PDF

A novel case-based reasoning system for explainable lung cancer diagnosis.

Comput Biol Med

December 2024

Department of Industrial Engineering & Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. Electronic address:

Lung cancer is a leading cause of cancer death worldwide. The survival rate is generally higher when this disease is detected in its early stages. Advances in artificial intelligence (AI) have enabled the development of decision support systems that help physicians diagnose diseases.

View Article and Find Full Text PDF

Cellular biomaterials offer unique properties for diverse biomedical applications. However, their complex viscoelastic behavior requires careful consideration for design optimization. This study explores the effective viscoelastic response of two promising unit cell designs (tetrahedron-based and octet-truss) suitable for high porosity and strong mechanics.

View Article and Find Full Text PDF

A promising approach for wound treatment is using multilayer wound dressings that offer multifunctional properties. In this study, a bilayered electrospun/hydrogel gelatin-based scaffold integrated with honey and curcumin was developed to treat wounds under an in vivo study. The first layer consisted of an enzymatic cross-linked gelatin hydrogel containing honey and curcumin, which gelatin/PCL nanofibers reinforced.

View Article and Find Full Text PDF

Background: The cornea plays a role in the refractive power of the eye, and when its natural curvature and thickness are compromised by diseases such as keratoconus or high myopia, this results in loss of visual acuity. Intracorneal rings (ICRs) were developed as a treatment option to restore the natural corneal curvature by implanting rings into tunnels cut within the corneal stroma. However, selecting and placing the appropriate ring can be difficult, and predicting refractive outcomes is challenging.

View Article and Find Full Text PDF

CALCIUM PHOSPHATE GRAFTS COMBINED WITH GUIDED TISSUE REGENERATION IN THE TREATMENT OF PERIODONTAL BONY DEFECTS- A SYSTEMATIC REVIEW AND META-ANALYSIS.

J Evid Based Dent Pract

December 2024

Assistant Professor, Department of Restorative Dentistry, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA.

Background: The objective of this systematic review is to assess the clinical outcomes of intrabony and furcation defects treated using a regenerative approach with calcium phosphate (CP) grafts combined plus guided tissue regeneration (GTR) membrane in comparison to open flap debridement (OFD).

Method: A review protocol was created under PRISMA checklist to find randomized clinical trials (RCTs) in English that compared CPs plus GTR with OFD in humans with intrabony and/or furcation defects. Both electronic and manual searches were conducted.

View Article and Find Full Text PDF

Fabricating scaffolds using three-dimensional (3D) printing is an emerging approach in tissue engineering (TE), where filaments with a controlled arrangement are printed. Using fused deposition modeling in bone replacement enables the simulation of bone structure. However, the microenvironment created by the scaffold must meet specific requirements.

View Article and Find Full Text PDF

Aging analyses of transformer oil based on optical properties of LIF spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

November 2024

Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Tehran, Iran; Faculty of Science, Department of Physics, Imam Khomeini International University, P.O. Box 34149-16818, Qazvin, Iran.

Here, the real time pyrolysis characteristics, the degradation degree and the aging time of the transformer oil have been investigated using laser induced fluorescence (LIF) spectroscopy. The signal elevation up to four-fold and the lucid red shift up to 10 nm are obtained against those of fresh oil. The fluorescence signal and the corresponding spectral shift are demonstrated to follow a linear correlation in terms of aging time.

View Article and Find Full Text PDF

Maintaining the stability of microbubbles is essential for enhancing the longevity of aphronic water-based drilling fluid usage in drilling depleted reservoirs and other under-pressured zones. Here, we introduce the integration of partially reduced graphene oxide (PrGO) nanosheets into the shell of aphron microbubbles (AMBS) to enhance the stability and size distribution, particularly for drilling fluid applications and carbon geological storage. The amphiphilic characteristic of PrGO nanosheets, due to meticulous control of the reduction process of graphene oxide, facilitates their spontaneous adsorption at interfaces, thereby reducing the interfacial energy as a two-dimensional surfactant.

View Article and Find Full Text PDF
Article Synopsis
  • A biocompatible polyelectrolyte complex (PEC) was created using Tragacanth gum (TG) and chitosan (CS) to explore its potential biological applications, with an optimized TG:CS ratio of 18:2 identified through various tests.
  • The study found that at pH 4, TG and CS showed strong interactions, highlighting charge neutralization in the PECs, which featured a unique macroporous structure.
  • The PEC cryogel demonstrated significant antibacterial activity against E. coli and S. aureus, while also promoting wound healing in human fibroblast cells without any toxic effects.
View Article and Find Full Text PDF

There is a growing need for research on Parkinson's disease (PD), a neurological condition that often affects the elderly. By examining brain network connectivity, researchers are able to discover how different brain regions interact during various cognitive and behavioral tasks. They can also understand how changes in nonlinear connections may be linked to neurological and mental illnesses.

View Article and Find Full Text PDF

Cu-mediated Ullmann-type coupling reactions are fundamental to organic synthesis, garnering significant academic and industrial interest since their inception. Optimizing reaction parameters, particularly temperature control, is crucial for maximizing efficiency while maintaining high yields. Bidentate ligands, such as amino acids, have demonstrated potential in facilitating these reactions at lower temperatures (<100 °C).

View Article and Find Full Text PDF
Article Synopsis
  • Background subtraction in X-ray coronary angiograms (XCA) enhances the diagnosis of coronary vessel diseases but is challenging due to complex background dynamics.
  • The proposed OTS-RPCA method uses robust PCA for background removal, employing techniques like morphological closing and tree-structured norms to improve vessel coherence and reduce noise.
  • Evaluated on real and synthetic datasets, the method outperformed seven existing techniques, yielding superior contrast and structural preservation of coronary vessels, as indicated by high CNR and SSIM values.
View Article and Find Full Text PDF

A 3D-printable polymer can provide an effective solution for developing piezoelectric structures. However, their nanocomposite formulation and 3D printing processability must be optimized for fabricating complex geometries with high printability. In the present study, we optimized the 3D-printable piezoelectric composite formulation for developing complex geometries by an additive manufacturing approach.

View Article and Find Full Text PDF

Removal of Acid Red 88 (AR88) as an azo dye from the synthetic type of wastewater was studied in a laboratory-made constructed wetland microbial fuel cell (CW-MFC) inoculated with Shewanella oneidensis MR-1 (SOMR-1). Plant cultivation was implemented using a typical CW plant known as Cyperus alternifolius. The complexity of the SOMR-1 cell membrane having different carriers of electrons and H ions gives the microbe special enzymatic ability to participate in the AR88 oxidation link to the O reduction.

View Article and Find Full Text PDF

Understanding the optical characteristics, especially the fluorescence properties of vegetable oils, particularly black seed oil (BSO), is an essential prerequisite for the development of the future applications in both medicinal and nutritional fields. In this way, it is essential to identify the roles played by the components such as unsaturated fatty acids, carotenoids, flavonoids, vitamin E, and chlorophylls in the BSO fluorescence spectra. In the current landscape, challenges arise from the adulteration of BSO with impurities such as sunflower oil (SO), complicating efforts to obtain pure BSO.

View Article and Find Full Text PDF

Clinical limitations due to poverty significantly impact the lives and health of many individuals globally. Nevertheless, this challenge can be addressed with modern technologies, particularly through robotics and artificial intelligence. This study aims to address these challenges using advanced technologies in robotic surgery and artificial intelligence, proposing a method to fully automate endometriosis robotic surgery with a focus on interpretability, accuracy, and reliability.

View Article and Find Full Text PDF

Manufacturing, Processing, and Characterization of Self-Expanding Metallic Stents: A Comprehensive Review.

Bioengineering (Basel)

September 2024

Mechanical Industrial and Manufacturing Engineering Department, University of Toledo, Toledo, OH 43606, USA.

This paper aims to review the State of the Art in metal self-expanding stents made from nitinol (NiTi), showing shape memory and superelastic behaviors, to identify the challenges and the opportunities for improving patient outcomes. A significant contribution of this paper is its extensive coverage of multidisciplinary aspects, including design, simulation, materials development, manufacturing, bio/hemocompatibility, biomechanics, biomimicry, patency, and testing methodologies. Additionally, the paper offers in-depth insights into the latest practices and emerging trends, with a special emphasis on the transformative potential of additive manufacturing techniques in the development of metal stents.

View Article and Find Full Text PDF

Brain tissue under preconditioning, as a complex issue, refers to repeated loading-unloading cycles applied in mechanical testing protocols. In previous studies, only the mechanical behavior of the tissue under preconditioning was investigated; However, the link between macrostructural mechanical behavior and microstructural changes in brain tissue remains underexplored. This study aims to bridge this gap by investigating bovine brain tissue responses both before and after preconditioning.

View Article and Find Full Text PDF

The widespread utilization of fossil fuels cause to significantly elevate greenhouse gas emissions. Consequently, the developments of the innovative methods are essential to convert methane into the green energy. Recently, significant effort is made to enhance the performance of the plasma-based conversion technologies.

View Article and Find Full Text PDF