2,971 results match your criteria: "Amirkabir University of Technology[Affiliation]"
Sports Biomech
November 2024
Management, Science and Technology Department, Amirkabir University of Technology, Tehran, Iran.
The purpose of this study was to assess quantitatively the effects of compression garments (CGs) on fatigue behaviour during sport activities such as running, which are the subject of a series of qualitative and physiological studies. A quantitative biomechanical analysis of the effects of CGs could assist coaches and athletes to adopt these types of performance enhancement garments. In this research, kinematic changes are measured using 2D phase portraits to study the influence of CGs on fatigue behaviour.
View Article and Find Full Text PDFBrain Topogr
January 2025
Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
By gaining insights into how brain activity is encoded and decoded, we enhance our understanding of brain function. This study introduces a method for classifying EEG signals related to visual objects, employing a combination of an LSTM network and nonlinear interval type-2 fuzzy regression (NIT2FR). Here, ResNet is utilized for feature extraction from images, the LSTM network for feature extraction from EEG signals, and NIT2FR for mapping image features to EEG signal features.
View Article and Find Full Text PDFSci Rep
January 2025
Civil and Environmental Engineering Faculty, Amirkabir University of Technology, Tehran, Iran.
This investigation addresses the reinforcement of rammed earth (RE) structures by integrating carpet polyacrylic yarn waste (CPYW) generated from the carpet production process and employing Ground Granulated Blast-Furnace Slag (GGBS) as a stabilizer, in conjunction with alkali activators potassium hydroxide (KOH), to enhance their mechanical properties. The study included conducting Unconfined Compressive Strength (UCS) tests and Brazilian Tensile Strength (BTS) tests on plain samples, GGBS-stabilized (SS) samples, CPYW-reinforced (CFS) samples, and samples reinforced with a combination of GGBS and CPYW (SCFS). The results showed that the mechanical and resistance properties of the CFS and SCFS samples were improved; these findings were confirmed by the presence of more cohesive GGBS gel and fibers as seen in FE-SEM and microscopic images.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran.
J Biomater Appl
January 2025
Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
This study aims to investigate the effects of adding nano-hydroxyapatite (nHA) to electrospun polycaprolactone (PCL) membranes for use in dental root regeneration. Porous membranes containing varying amounts of nHA (0, 1, 1.5, and 2.
View Article and Find Full Text PDFSci Rep
January 2025
Departemant of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.
With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.
View Article and Find Full Text PDF3D Print Addit Manuf
October 2024
New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran.
Robocasting calcium phosphate compounds as a novel approach to creating customized structures with interconnected pores not only overcomes the limitations of traditional fabrication methods of calcium phosphate substitutes but also boosts the potential for bone tissue regeneration. The ink development is a key step in 3D printing. In this study, different inks consisting of magnesium- and sodium-doped carbonated hydroxyapatite, β-tricalcium phosphate, and Pluronic F-127 were prepared to design biomimetic bone scaffolds.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Petroleum and Geoenergy Engineering, Amirkabir University of Technology, Tehran, Iran.
Nanofluids have the capacity to reduce interfacial tension (IFT) of crude oil and water for enhanced oil recovery (EOR) operations, but traditional nanoparticles are limited in tight reservoirs due to their inappropriate size for micro-nano pores and their tendency to aggregate. In this paper, Graphene Quantum Dots (GQDs) with simple and favorable properties are developed, and their performance and mechanism for reducing IFT are evaluated. The paper also aims to explore the effects of GQD precursor type, synthesis duration, and molar percentages of precursors on reducing IFT.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Maritime Engineering, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 15916-34311, Iran.
In addition to the usual loads, fixed jacket offshore platforms can be exposed to accidental loads from ship collisions. Indentation of tubular components is a significant defect that occurs when a supply vessel collides with a jacket platform, which can affect the ultimate strength of the offshore platform. This paper performs a nonlinear dynamic analysis using ABAQUS software to evaluate the ultimate strength of a wellhead jacket platform and to investigate its structural response to two consecutive impacts from a 2700-ton ship.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
A thermochromic pigment, derived from reaction of ethylenediamine and rhodamine B known as MA-RB, has been successfully developed. This pigment showcases temperature-controlled visible color-transformation properties in both solid and solution states. The thermochromic pigment MA-RB exhibits a notable color change from light pink to rose red, triggered by thermal excitation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran.
Surface electromyography (sEMG) data has been extensively utilized in deep learning algorithms for hand movement classification. This paper aims to introduce a novel method for hand gesture classification using sEMG data, addressing accuracy challenges seen in previous studies. We propose a U-Net architecture incorporating a MobileNetV2 encoder, enhanced by a novel Bidirectional Long Short-Term Memory (BiLSTM) and metaheuristic optimization for spatial feature extraction in hand gesture and motion recognition.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran.
This study explores the impact of metallic shells by electroforming method on the mechanical behavior of thermoplastic polyurethane (TPU)-based lattice structures. First, the TPU lattice structures were printed by additive manufacturing technique. Then layers of Ni and Cu as a thin shell were dressed on the TPU lattice structures in the electroforming baths of Ni and Cu solutions.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
This paper presents a ground motion prediction (GMP) model using an artificial neural network (ANN) for shallow earthquakes, aimed at improving earthquake hazard safety evaluation. The proposed model leverages essential input variables such as moment magnitude, fault type, epicentral distance, and soil type, with the output variable being peak ground acceleration (PGA) at 5% damping. To develop this model, 885 data pairs were obtained from the Pacific Engineering Research Center, providing a robust dataset for training and validation.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran.
To enhance therapeutic strategies for cardiovascular diseases, the development of more reliable in vitro preclinical systems is imperative. These models, crucial for disease modeling and drug testing, must accurately replicate the 3D architecture of native heart tissue. In this study, we engineered a scaffold with aligned poly(lactic--glycolic acid) (PLGA) microfilaments to induce cellular alignment in the engineered cardiac microtissue (ECMT).
View Article and Find Full Text PDFMed Phys
December 2024
Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran.
Background: Respiratory motion is a challenge for accurate radiotherapy that may be mitigated by real-time tracking. Commercial tracking systems utilize a hybrid external-internal correlation model (ECM), integrating continuous external breathing monitoring with sparse X-ray imaging of the internal tumor position.
Purpose: This study investigates the feasibility of using the next generation reservoir computing (NG-RC) model as a hybrid ECM to transform measured external motions into estimated 3D internal motions.
Cogn Neurodyn
December 2024
Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
Deception detection is a critical aspect across various domains. Integrating advanced signal processing techniques, particularly in neuroscientific studies, has opened new avenues for exploring deception at a deeper level. This study uses electroencephalogram (EEG) signals from a balanced cohort of 22 participants, consisting of both males and females, aged between 22 and 29, engaged in a visual task for instructed deception.
View Article and Find Full Text PDFComput Biol Med
December 2024
Department of Industrial Engineering & Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. Electronic address:
Lung cancer is a leading cause of cancer death worldwide. The survival rate is generally higher when this disease is detected in its early stages. Advances in artificial intelligence (AI) have enabled the development of decision support systems that help physicians diagnose diseases.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, 11365-9161 Tehran, Iran.
The ability of a surface to completely absorb a liquid droplet is an important property that can be controlled by geometrical structure and chemical composition of the surface. Here, using Laplace pressure and Gibbs free energy (GFE) considerations, a capped truncated microcone array geometry is proposed to obtain a near zero degree for contact angle (θ) of a water droplet. Our results showed that two essential conditions must be met to achieve a superabsorbent surface.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 15916-34311, Iran.
Cellular biomaterials offer unique properties for diverse biomedical applications. However, their complex viscoelastic behavior requires careful consideration for design optimization. This study explores the effective viscoelastic response of two promising unit cell designs (tetrahedron-based and octet-truss) suitable for high porosity and strong mechanics.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
City of London Dental School, University of Bolton, London BL3 5AB, UK.
Polymers have become essential in advancing bone tissue engineering, providing adaptable bone healing and regeneration solutions. Their biocompatibility and biodegradability make them ideal candidates for creating scaffolds that mimic the body's natural extracellular matrix (ECM). However, significant challenges remain, including degradation by-products, insufficient mechanical strength, and suboptimal cellular interactions.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshar, Guilan 43861-91836, Iran.
A promising approach for wound treatment is using multilayer wound dressings that offer multifunctional properties. In this study, a bilayered electrospun/hydrogel gelatin-based scaffold integrated with honey and curcumin was developed to treat wounds under an in vivo study. The first layer consisted of an enzymatic cross-linked gelatin hydrogel containing honey and curcumin, which gelatin/PCL nanofibers reinforced.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran. Electronic address:
This study presents the development of a novel piezoelectric scaffold for bone tissue engineering composed of poly(ε-caprolactone) (PCL), thermoplastic polyurethane (TPU), barium titanate (BT), and cellulose nanocrystals (CNC). PCL and TPU are considered advantageous materials because of their ease of processing, versatility in design, and ability to degrade over time; however, their inherent immiscibility poses challenges to achieving optimal porous structures. In this study, porous scaffolds were produced using gas foaming and salt leaching techniques, resulting in highly porous interconnected scaffolds exhibiting considerable elasticity that is suitable for dynamic cell culture while avoiding the use of toxic solvents.
View Article and Find Full Text PDFHeliyon
March 2024
Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria, 0002, South Africa.
Exhaust gases from the smelting furnace have high temperature and mass flow rate, and there is huge potential to use them for energy-related purposes such as electricity generation, cooling and heating. Utilization of the gases for energy-related purposes would lead to fuel savings and emissions reduction. To use this potential, it is necessary to design proper systems and cycles and apply a heat recovery unit.
View Article and Find Full Text PDFPLoS One
December 2024
ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
Background: The cornea plays a role in the refractive power of the eye, and when its natural curvature and thickness are compromised by diseases such as keratoconus or high myopia, this results in loss of visual acuity. Intracorneal rings (ICRs) were developed as a treatment option to restore the natural corneal curvature by implanting rings into tunnels cut within the corneal stroma. However, selecting and placing the appropriate ring can be difficult, and predicting refractive outcomes is challenging.
View Article and Find Full Text PDF