719 results match your criteria: "Allen Institute for Brain Science[Affiliation]"
Alzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: The medial temporal lobe (MTL) has distinct cortical subregions that are differentially vulnerable to pathology and neurodegeneration in diseases such as Alzheimer's disease. However, previous protocols for segmentation of MTL cortical subregions on magnetic resonance imaging (MRI) vary substantially across research groups, and have been informed by different cytoarchitectonic definitions, precluding consistent interpretations. The Hippocampal Subfields Group aims to create a harmonized, histology-based protocol for segmentation of MTL cortical subregions that can reliably be applied to T2-weighted MRI with high in-plane resolution.
View Article and Find Full Text PDFNature
January 2025
Allen Institute for Brain Science, Seattle, WA, USA.
bioRxiv
December 2024
Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305.
The rich diversity of synapses facilitates the capacity of neural circuits to transmit, process and store information. Here, we used multiplex super-resolution proteometric imaging through array tomography to define features of single synapses in the adult mouse neocortex. We find that glutamatergic synapses cluster into subclasses that parallel the distinct biochemical and functional categories of receptor subunits: GluA1/4, GluA2/3 and GluN1/GluN2B.
View Article and Find Full Text PDFbioRxiv
December 2024
Allen Institute for Brain Science, 615 Westlake Ave N, Seattle WA.
Image-based spatial transcriptomics platforms are powerful tools often used to identify cell populations and describe gene expression in intact tissue. Spatial experiments return large, high-dimension datasets and several open-source software packages are available to facilitate analysis and visualization. Spatial results are typically imperfect.
View Article and Find Full Text PDFArXiv
November 2024
Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960.
Networks of excitatory and inhibitory (EI) neurons form a canonical circuit in the brain. Seminal theoretical results on dynamics of such networks are based on the assumption that synaptic strengths depend on the type of neurons they connect, but are otherwise statistically independent. Recent synaptic physiology datasets however highlight the prominence of specific connectivity patterns that go well beyond what is expected from independent connections.
View Article and Find Full Text PDFNat Neurosci
December 2024
Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
Nat Commun
November 2024
New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China.
We conducted a large-scale whole-brain morphometry study by analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We registered 204 mouse brains of three major imaging modalities to the Allen Common Coordinate Framework (CCF) atlas, annotated 182,497 neuronal cell bodies, modeled 15,441 dendritic microenvironments, characterized the full morphology of 1876 neurons along with their axonal motifs, and detected 2.
View Article and Find Full Text PDFNat Neurosci
December 2024
Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA.
bioRxiv
November 2024
Center for Imaging Science, Johns Hopkins University, Baltimore,MD, USA.
Advancements in imaging and molecular techniques enable the collection of subcellular-scale data. Diversity in measured features, resolution, and physical scope of capture across technologies and experimental protocols pose numerous challenges to integrating data with reference coordinate systems and across scales. This resource paper describes a collection of technologies that we have developed for cross-modality 3D mapping for the alignment of transcriptomics at the micron scales of genes and cells to the anatomical tissue scales.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA.
Dynamics of activity across the cerebral cortex at the mesoscopic scale - coordinated fluctuations of local populations of neurons - are essential to perception and cognition and relevant to computations like sensorimotor integration and goal-directed task engagement. However, understanding direct causal links between population dynamics and behavior requires the ability to manipulate mesoscale activity and observe the effect of manipulation across multiple brain regions simultaneously. Here, we develop a novel system enabling simultaneous recording and manipulation of activity across the dorsal cortex of awake mice, compatible with large-scale electrophysiology from any region across the brain.
View Article and Find Full Text PDFCell Rep
November 2024
Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA. Electronic address:
The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate.
View Article and Find Full Text PDFFront Neuroanat
October 2024
Allen Institute for Brain Science, Seattle, WA, United States.
Biomolecules
September 2024
Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia.
Tropomyosins (Tpms) are rod-shaped proteins that interact head-to-tail to form a continuous polymer along both sides of most cellular actin filaments. Head-to-tail interaction between adjacent Tpm molecules and the formation of an overlap complex between them leads to the assembly of actin filaments with one type of Tpm isoform in time and space. Variations in the affinity of tropomyosin isoforms for different actin structures are proposed as a potential sorting mechanism.
View Article and Find Full Text PDFCurr Biol
November 2024
McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address:
Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct D1 and indirect D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These striosomal D1 (S-D1) and D2 (S-D2) pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA.
3D brain atlases are key resources to understand the brain's spatial organization and promote interoperability across different studies. However, unlike the adult mouse brain, the lack of developing mouse brain 3D reference atlases hinders advancements in understanding brain development. Here, we present a 3D developmental common coordinate framework (DevCCF) spanning embryonic day (E)11.
View Article and Find Full Text PDFNat Neurosci
December 2024
Allen Institute for Brain Science, Seattle, WA, USA.
Alzheimer's disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types in 84 donors with varying AD pathologies.
View Article and Find Full Text PDFNat Aging
October 2024
Allen Institute for Brain Science, Seattle, WA, USA.
The Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-AD) is a multifaceted open data resource designed to identify cellular and molecular pathologies that underlie Alzheimer’s disease. Integrating neuropathology, single cell and spatial genomics, and longitudinal clinical metadata, SEA-AD is a unique resource for studying the pathogenesis of Alzheimer’s and related dementias.
View Article and Find Full Text PDFWe present an enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. Best-in-class vectors were curated for accessing major striatal neuron populations including medium spiny neurons (MSNs), direct and indirect pathway MSNs, as well as Sst-Chodl, Pvalb-Pthlh, and cholinergic interneurons. Specificity was evaluated by multiple modes of molecular validation, three different routes of virus delivery, and with diverse transgene cargos.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
Neuronal activity promotes the proliferation of healthy oligodendrocyte precursor cells (OPC) and their malignant counterparts, gliomas. Many gliomas arise from and closely resemble oligodendroglial lineage precursors, including diffuse midline glioma (DMG), a cancer affecting midline structures such as the thalamus, brainstem and spinal cord. In DMG, glutamatergic and GABAergic neuronal activity promotes progression through both paracrine signaling and through bona-fide neuron-to-glioma synapses.
View Article and Find Full Text PDFNature
October 2024
Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
bioRxiv
October 2024
Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
Neural circuits in the spinal cord are composed of diverse sets of interneurons that play crucial roles in shaping motor output. Despite progress in revealing the cellular architecture of the spinal cord, the extent of cell type heterogeneity within interneuron populations remains unclear. Here, we present a single-nucleus transcriptomic atlas of spinal V1 interneurons across postnatal development.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
Spatial transcriptomics promises to transform our understanding of tissue biology by molecularly profiling individual cells . A fundamental question they allow us to ask is how nearby cells orchestrate their gene expression. To investigate this, we introduce cross-expression, a novel framework for discovering gene pairs that coordinate their expression across neighboring cells.
View Article and Find Full Text PDFVertebrates exhibit a wide range of motor behaviors, ranging from swimming to complex limb-based movements. Here we take advantage of frog metamorphosis, which captures a swim-to-limb-based movement transformation during the development of a single organism, to explore changes in the underlying spinal circuits. We find that the tadpole spinal cord contains small and largely homogeneous populations of motor neurons (MNs) and V1 interneurons (V1s) at early escape swimming stages.
View Article and Find Full Text PDFNat Commun
September 2024
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
Neurons in the cortex are heterogeneous, sending diverse axonal projections to multiple brain regions. Unraveling the logic of these projections requires single-neuron resolution. Although a growing number of techniques have enabled high-throughput reconstruction, these techniques are typically limited to dozens or at most hundreds of neurons per brain, requiring that statistical analyses combine data from different specimens.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Biology California State University, Northridge, CA, USA.
Animals with small nervous systems have a limited number of sensory neurons that must encode information from a changing environment. This problem is particularly exacerbated in nematodes that populate a wide variety of distinct ecological niches but only have a few sensory neurons available to encode multiple modalities. How does sensory diversity prevail within this neuronal constraint? To identify the genetic basis for patterning different nervous systems, we demonstrate that sensory neurons in the respond to various salt sensory cues in a manner that is partially distinct from that of the distantly related nematode .
View Article and Find Full Text PDF