101 results match your criteria: "Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research[Affiliation]"
Sci Data
January 2025
Division: Geosciences | Permafrost Research, Alfred Wegener Institute - Helmholtz Center for Polar and Marine Research, Telegrafenberg A45, 14473, Potsdam, Germany.
This study presents a new dataset of remote sensing-derived Transient Snowline Altitude (TSLA) measurements for glaciers in High Mountain Asia. We use the Google Earth Engine to obtain TSLA data for approx. 2.
View Article and Find Full Text PDFJ Exp Biol
December 2024
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Sections Integrative Ecophysiology and Deep-Sea Ecology & Technology, Am Handelshafen 12, 27515 Bremerhaven, Germany.
Increasing frequencies of heatwaves threaten marine ectotherm species but not all alike. In exposed habitats, some species rely on a higher capacity for passive tolerance at higher temperatures, thereby extending time-dependent survival limits. Here we assess how the involvement of the cardiovascular system in extended tolerance at the margins of the thermal performance curve is dependent on warming rate.
View Article and Find Full Text PDFNat Commun
October 2024
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
The anaerobic oxidation of alkanes is a microbial process that mitigates the flux of hydrocarbon seeps into the oceans. In marine archaea, the process depends on sulphate-reducing bacterial partners to exhaust electrons, and it is generally assumed that the archaeal CO-forming enzymes (CO dehydrogenase and formylmethanofuran dehydrogenase) are coupled to ferredoxin reduction. Here, we study the molecular basis of the CO-generating steps of anaerobic ethane oxidation by characterising native enzymes of the thermophile Candidatus Ethanoperedens thermophilum obtained from microbial enrichment.
View Article and Find Full Text PDFScience
August 2024
State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
J Fish Biol
September 2024
Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
Polar cod (Boreogadus saida) is an endemic key species of the Arctic Ocean ecosystem. The ecology of this forage fish is well studied in Arctic shelf habitats where a large part of its population lives. However, knowledge about its ecology in the central Arctic Ocean (CAO), including its use of the sea-ice habitat, is hitherto very limited.
View Article and Find Full Text PDFSci Total Environ
September 2024
Shelf Sea System Ecology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Kurpromenade 201, 27498 Helgoland, Germany.
High concentrations of microplastic (MP) particles have been reported in the Arctic Ocean. However, studies on the high-resolution lateral and vertical transport of MPs from the European waters to the Arctic are still scarce. Here, we provide information about the concentrations and compositions of MPs in surface, subsurface, and deeper waters (< 1 m, ∼ 4 m, and 17-1679 m) collected at 18 stations on six transects along the Norwegian Coastal Current (NCC) using an improved Neuston Catamaran, the COntinuos MicroPlastic Automatic Sampling System (COMPASS), and in situ pumps, respectively.
View Article and Find Full Text PDFGlob Chang Biol
May 2024
Marine Research Department, Senckenberg am Meer, Wilhelmshaven, Germany.
Rhodoliths built by crustose coralline algae (CCA) are ecosystem engineers of global importance. In the Arctic photic zone, their three-dimensional growth emulates the habitat complexity of coral reefs but with a far slower growth rate, growing at micrometers per year rather than millimeters. While climate change is known to exert various impacts on the CCA's calcite skeleton, including geochemical and structural alterations, field observations of net growth over decade-long timescales are lacking.
View Article and Find Full Text PDFNat Commun
April 2024
LOG, Laboratoire d'Océanologie et de Géosciences, Univ. Littoral Côte d'Opale, Univ. Lille, CNRS, IRD, UMR 8187, Wimereux, France.
Thriving in both epipelagic and mesopelagic layers, Rhizaria are biomineralizing protists, mixotrophs or flux-feeders, often reaching gigantic sizes. In situ imaging showed their contribution to oceanic carbon stock, but left their contribution to element cycling unquantified. Here, we compile a global dataset of 167,551 Underwater Vision Profiler 5 Rhizaria images, and apply machine learning models to predict their organic carbon and biogenic silica biomasses in the uppermost 1000 m.
View Article and Find Full Text PDFEcotoxicol Environ Saf
April 2024
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, Bremerhaven 27570, Germany.
Ingestion of microplastics can lead to deleterious consequences for organisms, as documented by numerous laboratory studies. The current knowledge is based on a multitude of effect studies, conducted with conventional fossil-based and non-degradable plastics. However, there is a lack of information about the acceptance and the effects of novel bio-based and biodegradable plastics.
View Article and Find Full Text PDFCommun Biol
March 2024
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
Climate change is opening the Arctic Ocean to increasing human impact and ecosystem changes. Arctic fjords, the region's most productive ecosystems, are sustained by a diverse microbial community at the base of the food web. Here we show that Arctic fjords become more prokaryotic in the picoplankton (0.
View Article and Find Full Text PDFEnviron Sci Technol Lett
February 2024
University of Rhode Island, Narragansett, Rhode Island, 215 South Ferry Rd, Narragansett 02882, United States.
Per- and polyfluorinated alkyl substances (PFAS) are a family of pollutants of high concern due to their ubiquity and negative human health impacts. The long-range marine transport of PFAS was observed during year-long deployments of passive tube samplers in the Fram Strait across three depth transects. Time weighted average concentrations ranged from 2.
View Article and Find Full Text PDFISME J
January 2024
Max Planck Institute for Marine Microbiology, Celsi-usstraße 1, 28359, Bremen, Germany.
Hadarchaeota inhabit subsurface and hydrothermally heated environments, but previous to this study, they had not been cultured. Based on metagenome-assembled genomes, most Hadarchaeota are heterotrophs that grow on sugars and amino acids, or oxidize carbon monoxide or reduce nitrite to ammonium. A few other metagenome-assembled genomes encode alkyl-coenzyme M reductases (Acrs), β-oxidation, and Wood-Ljungdahl pathways, pointing toward multicarbon alkane metabolism.
View Article and Find Full Text PDFSci Rep
October 2023
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany.
Climate indices are often used as a climate monitoring tool, allowing us to understand how the frequency, intensity, and duration of extreme weather events are changing over time. Here, based on complex statistical analysis we identify highly correlated significant pairs of compound events at the highest spatial resolution, on a monthly temporal scale across Europe. Continental-scale monthly analysis unleashes information on compound events such as high-risk zones, hotspots, monthly shifts of hotspots and trends, risk exposure to land cover and population, and identification of maximum increasing trends.
View Article and Find Full Text PDFFront Microbiol
August 2023
Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany.
In polar regions, the microphytobenthos has important ecological functions in shallow-water habitats, such as on top of coastal sediments. This community is dominated by benthic diatoms, which contribute significantly to primary production and biogeochemical cycling while also being an important component of polar food webs. Polar diatoms are able to cope with markedly changing light conditions and prolonged periods of darkness during the polar night in Antarctica.
View Article and Find Full Text PDFNat Commun
July 2023
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
Sci Total Environ
September 2023
Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Arraial do Cabo, RJ, Brazil.
Global marine conservation remains fractured by an imbalance in research efforts and policy actions, limiting progression towards sustainability. Rhodolith beds represent a prime example, as they have ecological importance on a global scale, provide a wealth of ecosystem functions and services, including biodiversity provision and potential climate change mitigation, but remain disproportionately understudied, compared to other coastal ecosystems (tropical coral reefs, kelp forests, mangroves, seagrasses). Although rhodolith beds have gained some recognition, as important and sensitive habitats at national/regional levels during the last decade, there is still a notable lack of information and, consequently, specific conservation efforts.
View Article and Find Full Text PDFSci Rep
March 2023
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany.
The global degradation of coral reefs is steadily increasing with ongoing climate change. Yet coral larvae settlement, a key mechanism of coral population rejuvenation and recovery, is largely understudied. Here, we show how the lipophilic, settlement-inducing bacterial pigment cycloprodigiosin (CYPRO) is actively harvested and subsequently enriched along the ectoderm of larvae of the scleractinian coral Leptastrea purpura.
View Article and Find Full Text PDFGlob Chang Biol
May 2023
GFZ German Research Center for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany.
Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH ) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community.
View Article and Find Full Text PDFSci Bull (Beijing)
June 2022
Alpine Paleoecology and Human Adaptation Group, State Key Laboratory of Tibetan Plateau Earth System, and Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
FEMS Microbiol Ecol
October 2022
Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway.
The methane-rich areas, the Loki's Castle vent field and the Jan Mayen vent field at the Arctic Mid Ocean Ridge (AMOR), host abundant niches for anaerobic methane-oxidizers, which are predominantly filled by members of the ANME-1. In this study, we used a metagenomic-based approach that revealed the presence of phylogenetic and functional different ANME-1 subgroups at AMOR, with heterogeneous distribution. Based on a common analysis of ANME-1 genomes from AMOR and other geographic locations, we observed that AMOR subgroups clustered with a vent-specific ANME-1 group that occurs solely at vents, and with a generalist ANME-1 group, with a mixed environmental origin.
View Article and Find Full Text PDFRisk management has reduced vulnerability to floods and droughts globally, yet their impacts are still increasing. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced.
View Article and Find Full Text PDFMov Ecol
March 2022
Institute of Zoology, Zoological Society of London, Regent's Park, London, UK.
Mov Ecol
March 2022
Institute of Zoology, Zoological Society of London, Regent's Park, London, UK.
J Acoust Soc Am
February 2022
Greenland Climate Research Centre, Greenland Institute of Natural Resources, P.O. Box 570, Kivioq 2, 3900 Nuuk, Greenland.
Climate-driven changes are affecting sea ice conditions off Tasiilaq, Southeast Greenland, with implications for marine mammal distributions. Knowledge about marine mammal presence, biodiversity, and community composition is key to effective conservation and management but is lacking, especially during winter months. Seasonal patterns of acoustic marine mammal presence were investigated relative to sea ice concentration at two recording sites between 2014 and 2018, with one (65.
View Article and Find Full Text PDFNat Commun
February 2022
Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany.
The Central Arctic Ocean is one of the most oligotrophic oceans on Earth because of its sea-ice cover and short productive season. Nonetheless, across the peaks of extinct volcanic seamounts of the Langseth Ridge (87°N, 61°E), we observe a surprisingly dense benthic biomass. Bacteriosponges are the most abundant fauna within this community, with a mass of 460 g C m and an estimated carbon demand of around 110 g C m yr, despite export fluxes from regional primary productivity only sufficient to provide <1% of this required carbon.
View Article and Find Full Text PDF