4 results match your criteria: "Albert-Ludwigs University of Freiburg and Max-Planck-Institute of Immunobiology and Epigenetics[Affiliation]"
Blood
May 2015
Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg and Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany; Institute of Immunology, Ulm University Medical Center, Ulm, Germany;
B-cell antigen receptor (BCR) expression is a key feature of most B-cell lymphomas, but the mechanisms of BCR signal induction and the involvement of autoantigen recognition remain unclear. In follicular lymphoma (FL) B cells, BCR expression is retained despite a chromosomal translocation that links the antiapoptotic gene BCL2 to the regulatory elements of immunoglobulin genes, thereby disrupting 1 heavy-chain allele. A remarkable feature of FL-BCRs is the acquisition of potential N-glycosylation sites during somatic hypermutation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2015
The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan 20139, Italy;
In mammals, VDJ recombination is responsible for the establishment of a highly diversified preimmune antibody repertoire. Acquisition of a functional Ig heavy (H) chain variable (V) gene rearrangement is thought to prevent further recombination at the IgH locus. Here, we describe VHQ52(NT); Vκgr32(NT) Ig monoclonal mice reprogrammed from the nucleus of an intestinal IgA(+) plasma cell.
View Article and Find Full Text PDFAdv Immunol
August 2014
Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Molecular immunology, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Department of Immunology, Ulm University, Ulm, Germany. Electronic address:
The development and function of B lymphocytes critically depend on the non-germline B-cell antigen receptor (BCR). In addition to the diverse antigen-recognition regions, whose coding sequences are generated by the somatic DNA rearrangement, the variety of the constant domains of the Heavy Chain (HC) portion contributes to the multiplicity of the BCR types. The functions of particular classes of the HC, particularly in the context of the membrane BCR, are not completely understood.
View Article and Find Full Text PDFJ Exp Med
February 2012
Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg and Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.
Somatic rearrangement of immunoglobulin (Ig) genes is a key step during B cell development. Using pro-B cells lacking the phosphatase Pten (phosphatase and tensin homolog), which negatively regulates phosphoinositide-3-kinase (PI3K) signaling, we show that PI3K signaling inhibits Ig gene rearrangement by suppressing the expression of the transcription factor Ikaros. Further analysis revealed that the transcription factor FoxO1 is crucial for Ikaros expression and that PI3K-mediated down-regulation of FoxO1 suppresses Ikaros expression.
View Article and Find Full Text PDF