A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmes85ea1c0ckol3t2028691t2o1g7asn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Ain-Shams University Cairo 11566 Egypt.... Publications | LitMetric

46 results match your criteria: "Ain-Shams University Cairo 11566 Egypt.[Affiliation]"

Ovarian cancer is one of the leading causes of mortality among women worldwide. However, early detection can significantly reduce mortality rates and mitigate subsequent complications related to both economic burden and mental well-being. Despite the development in the field of medical diagnosis, the death rates due to ovarian cancer have sharply increased.

View Article and Find Full Text PDF

Two pure fungal strains were isolated and identified from and , namely, (OR673586) and (OR673589), respectively. The extract and fractions of secondary metabolites of each fungus were evaluated for antioxidant, anti-inflammatory, antimicrobial, antibiofilm, antidiabetic, and cytotoxic activities. The chloroform fraction of showed potent cytotoxic activity (IC = 7.

View Article and Find Full Text PDF

The discovery of novel CDK2 inhibitors is crucial for developing targeted anticancer therapies. Thus, in this study, we aimed to design, synthesize, and evaluate a series of novel pyrazole derivatives (2a-g, 7a-d, 8a and b, 9, and 10) for their potential as CDK2/cyclin A2 enzyme inhibitors. The newly synthesized compounds were screened at 50 μM for CDK2 inhibition, followed by IC profiling of the most promising candidates.

View Article and Find Full Text PDF
Article Synopsis
  • - This systematic review analyzes corrosion inhibitors, detailing both inorganic and organic types, and highlights the superior efficiency of organic compounds due to specific chemical structures.
  • - It presents case studies on the performance of these inhibitors and compares the effectiveness of new environmentally friendly options, like biopolymers from natural sources.
  • - The review discusses various evaluation methods for corrosion inhibitors and explores the synergistic effects of mixed inhibitors, providing a comprehensive resource for professionals in corrosion control.
View Article and Find Full Text PDF

NAFLD/NASH has emerged as a global health concern with no FDA-approved treatment, necessitating the exploration of novel therapeutic elements for NASH. Probiotics are known as an important adjunct therapy in NASH. Zbiotics (ZB183) is the first commercially available genetically engineered probiotic.

View Article and Find Full Text PDF

The ongoing global threat posed by coronaviruses necessitates the urgent development of effective antiviral agents. In this study, we investigated the potential of hydroxyquinoline-pyrazole candidates as antiviral agents against a range of coronaviruses, including SARS-CoV-2, MERS-CoV, and HCoV-229E. Molecular docking studies were conducted to assess the binding affinity of the synthesized compounds to key viral proteins.

View Article and Find Full Text PDF

Graphitic carbon nitride (g-CN)-based materials have emerged as promising photocatalysts due to their unique band structure, excellent stability, and environmental friendliness. This review provides a comprehensive and in-depth analysis of the current state of research on g-CN-based photocatalysts. The review summarizes several strategies to improve the photocatalytic performance of pristine g-CN, , by creating heterojunctions, doping with non-metallic and metallic materials, co-catalyst loading, tuning catalyst morphology, metal deposition, and nitrogen-defect engineering.

View Article and Find Full Text PDF

Because of the serious risks they pose to the environment and public health, chlorophenols (CPs), a typical class of the most persistent organic pollutants, have drawn increasing attention. Monitoring CPs effectively has become a pressing and difficult problem. The rapidly increasing need for onsite and real-time CP detection has led to the consideration of electrochemical sensing as a workable solution.

View Article and Find Full Text PDF

: Inflammation-mediated insulin resistance in type 2 diabetes mellitus (T2DM) increases complications, necessitating investigation of its mechanism to find new safe therapies. This study investigated the effect of rosavin on the autophagy and the cGAS-STING pathway-related signatures (ZBP1, STING1, DDX58, LC3B, TNF-α) and on their epigenetic modifiers (miR-1976 and lncRNA AC074117.2) that were identified from analysis in T2DM animals.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the chemical profiles of marine red algae and three fungal endosymbionts found within it, focusing on the natural products they produce and their chemical similarities.
  • - Researchers used advanced techniques like ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS) to analyze extracts from both the algae and the fungi, identifying 76 different metabolites across various chemical classes.
  • - Findings indicate a relationship between the marine algae and the fungi, with some metabolites shared among them and others unique to the endophytes, highlighting distinct biochemical differences revealed through multivariate analysis.
View Article and Find Full Text PDF

Chicory ( L. ) is a renowned medicinal plant traditionally used for various ailments, yet the pharmacological potential of its roots, particularly in terms of antitumor activity, remains elusive. In the present study, we explore, for the first time, the metabolomic profile of ethanolic extract from roots (CIR) and further unveil its antiproliferative potential.

View Article and Find Full Text PDF

Because of its great efficiency and widespread application, reverse osmosis (RO) is a popular tool for water desalination and purification. However, traditional RO membranes have a short lifespan due to membrane fouling, deterioration, decreased salt rejection rate, and the low water flux with aging. As a result, membrane modification has received a lot of attention recently, with nanomaterials being extensively researched to improve membrane efficacy and lifespan.

View Article and Find Full Text PDF

Among sulfur-including heterocycles, the benzothiophene skeleton is one of the worthy structure fragments that exhibit structural similarities with active substrates to develop various potent lead molecules in drug design. Thus, some tetrahydrobenzo[]thiophene candidates were prepared from the β-enaminonitrile scaffold reactions with diverse carbon-centered electrophilic reagents and supported with DFT studies. The antiproliferative effect was screened against MCF7 and HePG2 cancer cell lines, and the results displayed the highest potency of imide 5, Schiff base 11, and phthalimido 12 candidates.

View Article and Find Full Text PDF

Some hexahydroquinoline candidates were prepared by reacting 2-amino-3-cyano-1-cyclohexylhexahydroquinoline with oxalyl chloride and triethyl orthoformate. The computational chemical approach agreed with the product-testing results. The produced substances were examined for their antiproliferative activity against liver carcinoma (HepG2), breast adenocarcinoma (MCF7), prostate cancer (PC3), and colon cancer (HCT116) cell lines.

View Article and Find Full Text PDF

The release of toxic azo dyes pollutants in the environment from different industries represents a public health concern and a serious environmental problem. Therefore, the conversion of hazardous methyl orange (MO) azo dye to environmentally benign products is a critical demand. In this work, an eco-friendly Prussian blue analogue (PBA) was synthesized and its catalytic activity toward the reduction of MO was investigated.

View Article and Find Full Text PDF

Cancer remains a worldwide healthcare undertaking, demanding continual innovation in anticancer drug development due to frequent drug resistance and adverse effects associated with existing therapies. The benzothiazole compounds, particularly 2-aminobenzothiazole derivatives, have attracted interest for their versatility in generating novel anticancer agents. This study explores the synthesis, and anticancer evaluation of new pyrimidine-based 2-aminobenzothiazole derivatives.

View Article and Find Full Text PDF

Guided by the molecular hybridization principle, a novel series of 4-chloropyridazinoxyphenyl conjugates (3a-h, 4a-e, and 5) was designed and synthesized as proposed apoptotic inducers and PARP-1 inhibitors. The growth inhibition % of the designed hybrids was investigated in eleven cancer cell lines, where the anticancer activities were found to be in the following order: 4-chloropyridazinoxyphenyl-aromatic ketones hybrids (3a-h) > 4-chloropyridazinoxyphenyl-benzyloxyphenylethan-1-one hybrids (4a-e) > 4-chloropyridazinoxyphenyl-thiazolidine-2,4-dione hybrid (5). Further, the most sensitive three cancer cell lines (HNO97, FaDu, and MDA-MB-468) were selected to measure the IC values of the new hybrids.

View Article and Find Full Text PDF

Combining sonochemistry with phytochemistry is a modern trend in the biosynthesis of metallic nanoparticles (NPs), which contributes to the sustainability of chemical processes and minimizes hazardous effects. Herein, titanium dioxide (TiO) NPs were bioengineered using a novel and facile ultrasound-assisted approach utilizing the greenly extracted essential oil of . FTIR and UV-Vis spectrophotometry were used to confirm the formation of TiO NPs.

View Article and Find Full Text PDF

Thiophene-2-carbohydrazide was used in this study to produce some thiophene-containing oxadiazole, triazole, and thiazolidinone derivatives through reactions with various carbon-centered electrophiles. Besides, the hydrazone obtained was allowed to react with mercaptoacetic acid and acetic anhydride to construct thiazolidinone and oxadiazole derivatives. The results of computational chemical study and outcomes of the experiments were in good agreement.

View Article and Find Full Text PDF

Microplastics (5 μm) are a developing threat that contaminate every environmental compartment. The detection of these contaminants is undoubtedly an important topic of study because of their high potential to cause harm to ecosystems. For many years, scientists have been assiduously striving to surmount the obstacle of detection restrictions and minimize the likelihood of receiving results that are either false positives or false negatives.

View Article and Find Full Text PDF

This work aims to develop plant extract-loaded electrospun nanofiber as an effective wound dressing scaffolds for topical wound healing. Electrospun nanofibers were fabricated from leaf extract (SCLE), poly(lactic--glycolic acid) (PLGA), poly(methyl methacrylate) (PMMA), collagen and glycine. Electrospinning conditions were optimized to allow the formation of nanosized and uniform fibers that display smooth surface.

View Article and Find Full Text PDF
Article Synopsis
  • - A new, affordable potentiometric sensor for detecting erythromycin (ERY) uses circular carbon dots and incorporates nanomaterials (f-MWCNTs/PANi) to improve performance, offering high sensitivity and selectivity against other similar drugs.
  • - The sensor operates with a detection limit of 9.6 ± 0.4 × 10 M and shows excellent selectivity when tested against related substances like azithromycin and paracetamol, making it suitable for accurate drug monitoring.
  • - Validated for use in pharmaceutical formulations and human urine samples, the sensor demonstrates recovery rates between 93.0% and 104.3%, showcasing its effectiveness even in complex biological matrices with minimal sample volume needed.
View Article and Find Full Text PDF

Metal organic frameworks (MOFs), with structural tunability, high metal content and large surface area have recently attracted the attention of researchers in the field of electrochemistry. In this work, an unprecedented use of multi-walled carbon nanotubes (MWCNTs)/copper-based metal-organic framework (Cu-BTC MOF) composite as an ion-to-electron transducer in a potentiometric sensor is proposed for the determination of orphenadrine citrate. A comparative study was conducted between three proposed glassy carbon electrodes, Cu-MOF, (MWCNTs) and MWCNTs/Cu-MOF composite based sensors, where Cu-MOF, MWCNTs and their composite were utilized as the ion-to-electron transducers.

View Article and Find Full Text PDF

Selective prodrug activation at a tumor site is crucial to maximise the efficiency of chemotherapy approaches and minimise side effects due to off-site activation. In this paper, a new prodrug activation strategy is reported based on the bioorthogonal Staudinger reaction. The feasibility of this prodrug activation strategy was initially demonstrated using 9-azido sialic acid 4 as a trigger and two novel triphenylphosphine-modified N-mustard-PRO 10 and doxorubicin-PRO 12 prodrugs in an HPLC-monitored release study.

View Article and Find Full Text PDF