8 results match your criteria: "Agricultural Environment Resources Institute[Affiliation]"

To clarify the characteristics of greenhouse gas emissions (CO, CH, and NO) and the comprehensive greenhouse effect from vegetable fields with different organic planting years, the differences in greenhouse gas emission flux, emission intensity (GHGI), and warming potential (GWP) and their influencing factors among vegetable fields with different organic planting years in Songhuaba, including 10 years, 6 years, 3 years, and conventional planting, were analyzed. The results showed that the CO emissions from organic planting treatments were higher than those from conventional planting, whereas the NO and CH emissions were the opposite. Compared to those from conventional planting, the CO emission fluxes and cumulative emissions from organic cultivation for 10, 6, and 3 years increased by 121.

View Article and Find Full Text PDF

Dissolved carbon in groundwater plays an important role in carbon cycling and ecological function maintenance, and its concentration level affects the migration and transformation of pollutants in groundwater. To understand the spatiotemporal variation characteristics of dissolved carbon and its driving factors in shallow groundwater around plateau lakes, variations in the concentrations of dissolved organic carbon (DOC), inorganic carbon (DIC), and total carbon (DTC) and their driving factors in shallow groundwater ( = 404) around eight plateau lakes were analyzed. The results indicated that the average values of (DOC), (DIC), and (DTC) in shallow groundwater around plateau lakes were 8.

View Article and Find Full Text PDF

Soil nitrogen accumulation in cropland and groundwater nitrogen pollution can be effectively alleviated by reducing exogenous nitrogen input, and fallow is an important measure for reducing exogenous nitrogen input. To explore the effects of fallow on nitrogen accumulation in the soil profile and shallow groundwater, the soil profile and shallow groundwater in cropland around Fuxian Lake were selected as research objects. The changes in nitrogen accumulation in the 0-100 cm soil profile and nitrogen concentration in shallow groundwater before (December 2017) and after (August 2020 and April 2021) fallow and their relationships were analyzed.

View Article and Find Full Text PDF

The storm runoff management strategy based on agricultural ditch nutrient loss characteristics in Erhai Lake, China.

J Contam Hydrol

February 2024

National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Initial flush management is an effective measure to control non-point source pollution (NPSP) in storm runoff. However, determining the parameter of the initial flush in different areas may pose challenges in storm runoff management strategies. To address this issue, Erhai Lake in China, Yunnan-Guizhou Plateau, was selected as an example for the study.

View Article and Find Full Text PDF

Elucidating the main sources and transformation process of nitrate for the prevention and control of groundwater nitrogen pollution and the development and utilization of groundwater resources has great significance. To explore the current situation and source of nitrate pollution in shallow groundwater around the Dianchi Lake, 73 shallow groundwater samples were collected in the rainy season in 2020(October) and dry season in 2021(April). Using the hydrochemistry and nitrogen and oxygen isotopes(N-NO and O-NO), the spatial distribution, source, and transformation process of nitrate in shallow groundwater were identified.

View Article and Find Full Text PDF

The extensive application of phosphorus fertilizers to croplands and the aggregation of towns and villages around plateau lakes has resulted in the continuous accumulation of phosphorus in the soil profile and the discharge of phosphorus pollutants, which causes phosphorus pollution in shallow groundwater around the lakes. The phosphorus entering the lake with shallow underground runoff in the region around the lake also affects the water quality safety of plateau lakes. The spatiotemporal differences in phosphorus concentrations in 452 shallow groundwater samples and the driving factors were analyzed by monitoring wells in croplands and residential areas around the eight lakes in Yunnan province during the rainy and dry seasons from 2019 to 2021.

View Article and Find Full Text PDF

Shallow groundwater around plateau lakes is one of the important sources of production and potable water. Shallow groundwater NO-N pollution driven by factors such as surface nitrogen input load, rainfall, and irrigation is serious and threatens the water quality of plateau lakes. In order to identify the characteristics of nitrogen pollution and its driving factors in shallow groundwater, 463 shallow groundwater samples were collected from wells in farmland and residential areas around eight plateau lakes of Yunnan in the rainy and dry seasons in 2020 and 2021.

View Article and Find Full Text PDF

First Report of Root Rot Caused by Dactylonectria torresensis on Bletilla striata (Baiji) in Yunnan, China.

Plant Dis

October 2020

Yunnan University of Chinese Medicine, No.1076, Yuhua Road, Chenggong District, Kunming, Yunnan, 650500, China, Kunming, Yunnan, China;

Article Synopsis
  • Bletilla striata, an endangered plant with medicinal uses in China, experienced significant disease outbreaks characterized by wilting and leaf yellowing, particularly during hot and humid conditions from May to August.
  • The disease affected 45-75% of plants in different fields, leading to yield losses between 40-65%.
  • Researchers isolated the fungal agent by culturing symptomatic plant tissue and identified three distinct hyphal-tip isolates with unique morphological features, including dark red colonies and specific spore characteristics.
View Article and Find Full Text PDF