90 results match your criteria: "Affiliated to the University of Ulm[Affiliation]"

Background: The tin (Sn) prefilter technique is a recently introduced dose-saving technique in computed tomography (CT). This study investigates whether there is an altered molecular biological response in blood cells using the tin prefiltering technique.

Methods: Blood from 6 donors was X-irradiated ex-vivo with 20 mGy full dose (FD) protocols (Sn 150 kV, 150 kV, and 120 kV) and a tin prefiltered 16.

View Article and Find Full Text PDF

Background/objectives: To assess magnetic resonance image (MRI) findings in children and adolescents with atraumatic non-overload ankle pain and to identify potential anatomic risk factors.

Methods: In total, 310 MRIs of 6- to 20-year-old patients were evaluated regarding detectable ankle pathologies. A total of 147 patients (68 males; 79 females) suffered from atraumatic non-overload ankle pain.

View Article and Find Full Text PDF

The combination of high and low LET radionuclides has been tested in several patient studies to improve treatment response. Radionuclide mixtures can also be released in nuclear power plant accidents or nuclear bomb deployment. This study investigated the DNA damage response and DNA double-strand break (DSB) repair in peripheral blood mononuclear cells (PBMCs) after internal exposure of blood samples of 10 healthy volunteers to either no radiation (baseline) or different radionuclide mixtures of the α- and β-emitters [Ra]RaCl and [Lu]LuCl, i.

View Article and Find Full Text PDF

This work reports on a model that describes patient-specific absorbed dose-dependent DNA damage response in peripheral blood mononuclear cells of thyroid cancer patients during radioiodine therapy and compares the results with the ex vivo DNA damage response in these patients. Blood samples of 18 patients (nine time points up to 168 h post-administration) were analyzed for radiation-induced γ-H2AX + 53BP1 DNA double-strand break foci (RIF). A linear one-compartment model described the absorbed dose-dependent time course of RIF (Parameters: characterizes DSB damage induction; and are rate constants describing fast and slow repair).

View Article and Find Full Text PDF

In times of war, radiological/nuclear emergency scenarios have become a reemphasized threat. However, there are challenges in transferring whole-blood samples to laboratories for specialized diagnostics using RNA. This project aims to miniaturize the process of unwieldy conventional RNA extraction with its stationed technical equipment using a microfluidic-based slide (MBS) for point-of-care diagnostics.

View Article and Find Full Text PDF

After nuclear scenarios, combined injuries of acute radiation syndrome (ARS) with, e.g., abdominal trauma, will occur and may require contrast-enhanced computed tomography (CT) scans for diagnostic purposes.

View Article and Find Full Text PDF

Background/aim: The application of non-invasive physical plasma (NIPP) generates reactive oxygen species. These can lead to chemical oxidation of cellular molecules including DNA. On the other hand, NIPP can induce therapeutically intended apoptosis, which also leads to DNA fragmentation in the late phase.

View Article and Find Full Text PDF

Generation of two iPSC lines (MHHi001-A-12 and MHHi001-A-13) carrying biallelic truncating mutations at the 3'-end of SRCAP using CRISPR/Cas9.

Stem Cell Res

December 2023

Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.

Non-Floating Harbour Syndrome (FLHS) neurodevelopmental disorder (NDD) is a recently described disorder caused by mutations in certain regions of the SRCAP gene. We generated two iPSC lines that contain truncating mutation on both alleles at the 3'-end of SRCAP using CRISPR/Cas9 technology. Both cell lines are pluripotent, differentiate into the 3 germ layers and contain no genomic aberrations or off-target modifications.

View Article and Find Full Text PDF

Exposure to high acute doses of ionizing radiation (IR) can induce cutaneous radiation syndrome. Weeks after such radiation insults, keratinocyte nuclei of the epidermis exhibit persisting genomic lesions that present as focal accumulations of DNA double-strand break (DSB) damage marker proteins. Knowledge about the nanostructure of these genomic lesions is scarce.

View Article and Find Full Text PDF

The objective was to investigate the influence of different pre-storage temperatures in the dicentric chromosome analysis (DCA) protocol (22°C vs. 37°C) by using γ-H2AX + 53BP1 foci as a marker for deoxyribonucleic acid (DNA) double-strand break (DSB) damage induction and repair and the formation of dicentric chromosomes as a result of mis-repair. Repair of γ-H2AX + 53BP1 DSB foci was absent in samples that were incubated for 2 h at 22°C after exposure of 0.

View Article and Find Full Text PDF

Purpose: Gene expression (GE) analysis of a radio-sensitive gene set () has been introduced in the last decade as an early and high-throughput prediction tool of later developing acute hematologic radiation syndrome (H-ARS) severity. The use of special tubes for RNA extraction from peripheral whole blood (PAXgene) represent an established standard in GE studies, although uncommonly used in clinics and not immediately available in the quantities needed in radiological/nuclear (R/N) incidents. On the other hand, EDTA blood tubes are widely utilized in clinical practice.

View Article and Find Full Text PDF

Unlabelled: This study describes a method to validate a radiation transport model that quantifies the number of DNA double-strand breaks (DSB) produced in the lymphocyte nucleus by internal ex vivo irradiation of whole blood with the radionuclides Y, Tc, I, I, Lu, Ra, and Ac in a test vial using the GATE/Geant4 code at the macroscopic level and the Geant4-DNA code at the microscopic level.

Methods: The simulation at the macroscopic level reproduces an 8 mL cylindrical water-equivalent medium contained in a vial that mimics the geometry for internal ex vivo blood irradiation. The lymphocytes were simulated as spheres of 3.

View Article and Find Full Text PDF

(1) Background: Hyperbaric oxygen (HBO) exposure induces oxidative stress that may lead to DNA damage, which has been observed in human peripheral blood lymphocytes or non-human cells. Here, we investigated the impact of hyperbaric conditions on two human osteoblastic cell lines: primary human osteoblasts, HOBs, and the osteogenic tumor cell line SAOS-2. (2) Methods: Cells were exposed to HBO in an experimental hyperbaric chamber (4 ATA, 100% oxygen, 37 °C, and 4 h) or sham-exposed (1 ATA, air, 37 °C, and 4 h).

View Article and Find Full Text PDF

Translocation analysis using fluorescence in situ hybridization (FISH) is the method of choice for dose assessment in case of chronic or past exposures to ionizing radiation. Although it is a widespread technique, unlike dicentrics, the number of FISH-based inter-laboratory comparisons is small. For this reason, although the current Running the European Network of Biological and Physical retrospective Dosimetry (RENEB) inter-laboratory comparison 2021 was designed as a fast response to a real emergency scenario, it was considered a good opportunity to perform an inter-laboratory comparison using the FISH technique to gain further experience.

View Article and Find Full Text PDF

The Running the European Network of biological and retrospective dosimetry (RENEB) network of laboratories has a range of biological and physical dosimetry assays that can be deployed in the event of a radiation incident to provide exposure assessment. To maintain operational capability and provide training, RENEB runs regular inter-laboratory comparison (ILC) exercises. The RENEB ILC2021 was carried out with all the biological and physical dosimetry assays employed in the network.

View Article and Find Full Text PDF

Objective: Recently, promising radiation-induced EDA2R gene expression (GE) changes after low level radiation could be shown. Stimulated by that, in this study, we intended to independently validate these findings and to further characterize dose-response relationships in comparison to FDXR and the γH2AX-DNA double-strand break (DSB) focus assay, since both assays are already widely used for biodosimetry purposes.

Materials And Methods: Peripheral blood samples from six healthy human donors were irradiated ex vivo (dose: ranging from 2.

View Article and Find Full Text PDF

Radiological and especially nuclear accidents and incidents pose a threat to populations. In such events, gene expression (GE) analysis of a set of 4 genes (FDXR, DDB2, POU2AF1, WNT3) is an emerging approach for early and high-throughput prediction of the later manifesting severity degrees of the hematological acute radiation syndrome (H-ARS). Validation of this gene set on radiation victims is difficult since these events are rare.

View Article and Find Full Text PDF

Purpose: As α-emitters for radiopharmaceutical therapies are administered systemically by intravenous injection, blood will be irradiated by α-particles that induce clustered DNA double-strand breaks (DSBs). Here, we investigated the induction and repair of DSB damage in peripheral blood mononuclear cells (PBMCs) as a function of the absorbed dose to the blood following internal ex vivo irradiation with [Ra]RaCl.

Methods: Blood samples of ten volunteers were irradiated by adding [Ra]RaCl solution with different activity concentrations resulting in absorbed doses to the blood of 3 mGy, 25 mGy, 50 mGy and 100 mGy.

View Article and Find Full Text PDF

Hyperthermia inhibits DNA double-strand break (DSB) repair that utilizes homologous recombination (HR) pathway by a poorly defined mechanism(s); however, the mechanisms for this inhibition remain unclear. Here we report that hyperthermia decreases H4K16 acetylation (H4K16ac), an epigenetic modification essential for genome stability and transcription. Heat-induced reduction in H4K16ac was detected in humans, , and yeast, indicating that this is a highly conserved response.

View Article and Find Full Text PDF

Isolation of RNA from whole saliva, a non-invasive and easily accessible biofluid that is an attractive alternative to blood for high-throughput biodosimetry of radiological/nuclear victims might be of clinical significance for prediction and diagnosis of disease. In a previous analysis of 12 human samples we identified two challenges to measuring gene expression from total RNA: (1) the fraction of human RNA in whole saliva was low and (2) the bacterial contamination was overwhelming. To overcome these challenges, we performed selective cDNA synthesis for human RNA species only by employing poly(A)+-tail primers followed by qRT-PCR.

View Article and Find Full Text PDF

Aim: The aim of this study was to provide a systematic approach to characterize DNA damage induction and repair in isolated peripheral blood mononuclear cells (PBMCs) after internal ex vivo irradiation with [I]NaI. In this approach, we tried to mimic ex vivo the irradiation of patient blood in the first hours after radioiodine therapy.

Material And Methods: Blood of 33 patients of two centres was collected immediately before radioiodine therapy of differentiated thyroid cancer (DTC) and split into two samples.

View Article and Find Full Text PDF
Article Synopsis
  • In the event of a nuclear or radiological incident, early diagnostic tools are needed to identify individuals based on their level of radiation exposure, especially for those who need urgent medical attention.
  • Radiation-induced gene expression changes can serve as biomarkers to assess exposure levels and predict potential health effects well into the future.
  • At the ConRad 2021 conference, experts discussed advancements in using these gene expression markers for retrospective biodosimetry, predicting acute health impacts, and developing efficient diagnostic platforms.
View Article and Find Full Text PDF

The accepted generic multiple-parameter and early-response biodosimetry and dosimetry assessment approach for suspected high-dose radiation (i.e. life-threatening) exposure includes measuring radioactivity associated with the exposed individual (if appropriate); observing and recording prodromal signs/symptoms; obtaining serial complete blood counts with white-blood-cell differential; sampling blood for the chromosome-aberration cytogenetic bioassay using the 'gold standard' dicentric assay (premature chromosome condensation assay for exposures >5 Gy photon acute doses equivalent), measurement of proteomic biomarkers and gene expression assays for dose assessment; bioassay sampling, if appropriate, to determine radioactive internal contamination; physical dose reconstruction, and using other available opportunistic dosimetry approaches.

View Article and Find Full Text PDF