8 results match your criteria: "Affiliated North China University of Science and Technology[Affiliation]"
J Neurochem
January 2025
Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, China.
This study employs single-cell RNA sequencing (scRNA-seq) and assay for transposase-accessible chromatin with high-throughput sequencing technologies (scATAC-seq) to perform joint sequencing on cells at various time points during the induction of adipose-derived stem cells (ADSCs) into astrocytes. We applied bioinformatics approaches to investigate the differentiation trajectories of ADSCs during their induced differentiation into astrocytes. Pseudotemporal analysis was used to infer differentiation trajectories.
View Article and Find Full Text PDFCell Mol Neurobiol
December 2024
Department of Neurology, Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan, 063000, Hebei, China.
Adipose-derived stromal cells (ADSCs) are commonly used in regenerative medicine, but the genetic features of their development into neuronal cells are unknown. This study used single-cell RNA sequencing (scRNA-seq) to reveal gene expression changes during ADSCs to neuronal differentiation. Sequencing of the ADSCs group, the prei-1d group, and the induction 1 h, 3 h, 5 h, 6 h, and 8 h groups was performed using the BD Rhapsody platform.
View Article and Find Full Text PDFCell Adh Migr
December 2024
Department of Neurology of Kailuan General Hospital affiliated North China University of Science and Technology, Tangshan City, China.
The potential of adult adipose-derived stromal cells (ADSCs) to differentiate into astrocytes holds promise for future cell transplantation therapies. However, the growth of differentiated astrocytes is unstable, and their survival rate is low. Endoplasmic reticulum (ER) pathway mediated apoptosis is one of the causes of cell death, but whether there is ER stress response in the differentiation of ADSCs into astrocytes is still unclear.
View Article and Find Full Text PDFMol Neurobiol
August 2024
Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China.
We employed single-cell transcriptome sequencing to reveal the dynamic gene expression changes during the differentiation of adipose-derived stromal cells (ADSCs) into astrocytes. Single-cell RNA sequencing was conducted on cells from the ADSCs group and the induced groups at 2, 7, 14, and 21 days using the 10 × Chromium platform. Data underwent quality control and dimensionality reduction.
View Article and Find Full Text PDFHum Cell
July 2024
Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China.
Mesenchymal stem/stromal cells (MSCs), originating from the mesoderm, represent a multifunctional stem cell population capable of differentiating into diverse cell types and exhibiting a wide range of biological functions. Despite more than half a century of research, MSCs continue to be among the most extensively studied cell types in clinical research projects globally. However, their significant heterogeneity and phenotypic instability have significantly hindered their exploration and application.
View Article and Find Full Text PDFApoptosis is the primary cause of cell death in the differentiation of Adipose-derived stromal cells (ADSCs) into neurons. However, the relationship between endoplasmic reticulum stress (ERS) and death receptor-mediated apoptosis in ADSC-induced neuronal differentiation is not clear. ADSCs were isolated and induced to differentiate into neurons using β-mercaptoethanol.
View Article and Find Full Text PDFCell Biol Int
December 2022
Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan.
The cellular heterogeneity and genetic features of stemness of adipose-derived stromal cells (ADSCs) remain unclear. Using single-cell RNA sequencing (scRNA-seq), we investigated the genomic features of the stemness gene in ADSCs with genetic variability. We cultured the ADSCs isolated from the fat waste of a healthy adult volunteers undergoing cosmetic plastic surgery to the third generation, used the BD Rhapsody platform to perform scRNA-seq, then used Monocle2 to analyze the growth and development trajectory of ADSCs, Cellular Trajectory Reconstruction Analysis Using Gene Counts and Expression (CytoTRACE) to evaluate the stemness gene characteristics in ADSCs clusters, and Beam to analyze the expression change characteristics of the main stemness related genes of ADSCs.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.