403 results match your criteria: "Advanced Analysis Center[Affiliation]"

Electronic charge rearrangement between components of a heterostructure is the fundamental principle to reach the electronic ground state. It is acknowledged that the density of state distribution of the components governs the amount of charge transfer, but a notable dependence on temperature is not yet considered, particularly for weakly interacting systems. Here, it is experimentally observed that the amount of ground-state charge transfer in a van der Waals heterostructure formed by monolayer MoS sandwiched between graphite and a molecular electron acceptor layer increases by a factor of 3 when going from 7 K to room temperature.

View Article and Find Full Text PDF

CTCF looping is established during gastrulation in medaka embryos.

Genome Res

June 2021

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 Japan.

Chromatin looping plays an important role in genome regulation. However, because ChIP-seq and loop-resolution Hi-C (DNA-DNA proximity ligation) are extremely challenging in mammalian early embryos, the developmental stage at which cohesin-mediated loops form remains unknown. Here, we study early development in medaka (the Japanese killifish, ) at 12 time points before, during, and after gastrulation (the onset of cell differentiation) and characterize transcription, protein binding, and genome architecture.

View Article and Find Full Text PDF

American foulbrood (AFB) is the most serious bacterial disease of honey bee brood. Spores of the causative agent are ingested by bee larvae via brood foods and germinated cells proliferate in the larval midgut. In Japan, a macrolide antibiotic, tylosin, is used as the approved prophylactic for AFB.

View Article and Find Full Text PDF

A new method is preliminarily validated for the simultaneous analysis of ionic and neutral per- and polyfluoroalkyl substances (PFASs) in both particulate and gaseous phases in air using a nanosampler-20 air sampler (NS20) composed of quartz fiber filters (QFFs), polyurethane foam (PUF) and artificial activated charcoal (GAIAC™). Perfluoroalkane sulfonamido ethanols (FOSEs) mainly remained in PUF, whereas the other neutral analytes were mainly found in GAIAC. Satisfactory recoveries were obtained for FOSEs, fluorotelomer alcohols (FTOHs), fluorotelomer iodides (FTIs), ranging fron 70%-120%, moderate recoveries were achieved for perfluorinated iodine alkanes (FIAs) and diiodofluoroalkanes (FDIAs), ranging from 50%-70%, while poor recoveries were found for perfluoroalkane sulfonamides (FOSAs).

View Article and Find Full Text PDF

Researchers have widely investigated Oriental lacquers to identify the chemical composition and have elucidated corresponding polymerization mechanisms using rigorous analytical techniques. However, researchers generally test the physical properties of Oriental lacquers by conventional methods that are perhaps overly simplistic. Here, we propose accurate and quantitative methods for evaluating the physical properties of Korean, Vietnamese, and Myanmarese lacquer films using atomic force microscopy (AFM), a nanoindenter, and a 90° peel tester.

View Article and Find Full Text PDF

Nitrogen-doped porous carbons containing atomically dispersed iron are prime candidates for substituting platinum-based catalysts for oxygen reduction reaction (ORR) in fuel cells. These carbon catalysts are classically synthesizedviacomplicated routes involving multiple heat-treatment steps to form the desired Fe-N sites. We herein developed a highly active FeNC catalyst comprising of exclusive Fe-N sites by a simplified solid-state synthesis protocol involving only a single heat-treatment.

View Article and Find Full Text PDF

Concave gold nanocubes are viable optical nanoprobes for the determination of nitrite ions. Herein, a novel approach was developed, based on the measurement of localized surface plasmon resonance absorption. The addition of nitrite ions selectively induced the etching of concave gold nanocubes, abrading the sharp vertices to spherical corners, which resulted in blue-shifted absorption accompanied by a color change from sapphire blue to light violet.

View Article and Find Full Text PDF

Conferring drought resistant traits to crops is one of the major aims of current breeding programs in response to global climate changes. We previously showed that exogenous application of acetic acid to roots of various plants could induce increased survivability under subsequent drought stress conditions, but details of the metabolism of exogenously applied acetic acid, and the nature of signals induced by its application, have not been unveiled. In this study, we show that rice rapidly induces jasmonate signaling upon application of acetic acid, resulting in physiological changes similar to those seen under drought.

View Article and Find Full Text PDF

After the WHO designated COVID-19 a global pandemic, face masks have become a precious commodity worldwide. However, uncertainty remains around several details regarding face masks, including the potential for transmission of bioaerosols depending on the type of mask and secondary spread by face masks. Thus, understanding the interplay between face mask structure and harmful bioaerosols is essential for protecting public health.

View Article and Find Full Text PDF

Tetramer formation of Bacillus subtilis YabJ protein that belongs to YjgF/YER057c/UK114 family.

Biosci Biotechnol Biochem

February 2021

Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki, Japan.

Bacillus subtilis YabJ protein belongs to the highly conserved YjgF/YER057c/UK114 family, which has a homotrimeric quaternary structure. The dominant allele of yabJ gene that is caused by a single amino acid mutation of Ser103Phe enables poly-γ-glutamic acid (γPGA) production of B. subtilis under conditions where the cell-density signal transduction was disturbed by the loss of DegQ function.

View Article and Find Full Text PDF

In bacterial biotechnology, instead of producing functional proteins from plasmids, it is often necessary to deliver functional proteins directly into live cells for genetic manipulation or physiological modification. We constructed a library of cell-penetrating peptides (CPPs) capable of delivering protein cargo into bacteria and developed an efficient delivery method for CPP-conjugated proteins. We screened the library for highly efficient CPPs with no significant cytotoxicity in Escherichia coli and developed a model for predicting the penetration efficiency of a query peptide, enabling the design of new and efficient CPPs.

View Article and Find Full Text PDF

Deformation twinning, one of the major deformation modes in a crystalline material, has typically been analyzed using generalized planar fault energy (GPFE) curves. Despite the significance of these curves in understanding the twin nucleation and its effect on the mechanical properties of crystals, their experimental validity is lacking. In this comparative study based on the first-principles calculation, molecular dynamics simulation, and quantitative in-situ tensile testing of Al nanowires inside a transmission electron microscopy system, we present both a theoretical and an experimental approach that enable the measurement of a part of the twin formation energy of the perfect Al crystal.

View Article and Find Full Text PDF

We demonstrate a fabrication of an atomically controlled single-crystal heart-shaped nanostructure using a convergent electron beam in a scanning transmission electron microscope. The delicately controlled e-beam enable epitaxial crystallization of perovskite oxide LaAlO grown out of the relative conductive interface (i.e.

View Article and Find Full Text PDF

Microscopic analysis of metal matrix composites containing carbon Nanomaterials.

Appl Microsc

February 2020

School of Advanced Materials Engineering, Kookmin University, 02707, Seoul, Republic of Korea.

Metallic matrix composites reinforced with carbon nanomaterials continue to attract interest because of their excellent mechanical, thermal, and electrical properties. However, two critical issues have limited their commercialization. Uniform distribution of carbon nanomaterials in metallic matrices is difficult, and the interfaces between the nanomaterials and matrices are weak.

View Article and Find Full Text PDF

Heterologous production of new protease inhibitory peptide marinostatin E.

Biosci Biotechnol Biochem

January 2021

Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.

Bicyclic peptides, marinostatins, are protease inhibitors derived from the marine bacterium Algicola sagamiensis. The biosynthetic gene cluster of marinostatin was previously identified, although no heterologous production was reported. In this report, the biosynthetic gene cluster of marinostatin (mstA and mstB) was cloned into the expression vector pET-41a(+).

View Article and Find Full Text PDF

van der Waals (vdW) magnetic materials provide an ideal platform to study low-dimensional magnetism. However, observations of magnetic characteristics of these layered materials truly distinguishing them from conventional magnetic thin film systems have been mostly lacking. In an effort to investigate magnetic properties unique to vdW magnetic materials, we examine the exchange bias effect, a magnetic phenomenon emerging at the ferromagnetic-antiferromagnetic interface.

View Article and Find Full Text PDF

Structure-based substrate specificity analysis of GH11 xylanase from Streptomyces olivaceoviridis E-86.

Appl Microbiol Biotechnol

March 2021

Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.

Although many xylanases have been studied, many of the characteristics of xylanases toward branches in xylan remain unclear. In this study, the substrate specificity of a GH11 xylanase from Streptomyces olivaceoviridis E-86 (SoXyn11B) was elucidated based on its three-dimensional structure. Subsite mapping suggests that SoXyn11B has seven subsites (four subsites on the - side and three subsites on the + side), and it is one longer than the GH10 xylanase from S.

View Article and Find Full Text PDF

The Rice Core Collection of Japanese Landraces (JRC) consisting of 50 accessions was developed by the genebank at the National Agriculture and Food Research Organization (NARO) in 2008. As a Japanese landrace core collection, the JRC has been used for many research projects, including screening for different phenotypes and allele mining for target genes. To understand the genetic diversity of Japanese Landraces, we performed whole-genome resequencing of these 50 accessions and obtained a total of 2,145,095 single nucleotide polymorphism (SNPs) and 317,832 insertion-deletions (indels) by mapping against the Oryza sativa ssp.

View Article and Find Full Text PDF

Tetraphenylethene-based fluorescent probe with aggregation-induced emission behavior for Hg detection and its application.

Anal Chim Acta

March 2021

National Agenda Research Division, Korea Institute of Science & Technology, Hwarang-ro 14-gil 5 Seongbuk-gu, Seoul, 02792, Republic of Korea; University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea. Electronic address:

A tetraphenylethene (TPE) derivative was designed and synthesized upon conjugation with bis(thiophen-2-ylmethyl) amine (BTA) containing a mercury-binding moiety and further characterized by using Nuclear magnetic resonance (NMR), LC-MS, UV-Vis, and fluorescence spectroscopic methods. The resulting TPE-BTA exhibited comprehensive aggregation-induced emission while expressing a high quantum yield and emission intensity at 70% water fraction. The probe exhibited a good photochromic effect with a Stokes shift of 178 nm, and the emission intensity at 550 nm increased considerably with the color turning from dark green to bright green under a UV lamp upon the addition of 5 μM Hg.

View Article and Find Full Text PDF

A highly sensitive and selective colorimetric assay for the dual detection of Hg and As using gold nanoparticles (AuNPs) conjugated with d-penicillamine (DPL) was developed. When Hg and As ions coordinate with AuNP-bound DPLs, the interparticle distance decreases, inducing aggregation; this results in a significant color change from wine red to dark midnight blue. The Hg4f and As3d signals in the X-ray photoelectron spectra of Hg (As)-DPL-AuNPs presented binding energies indicative of Hg-N(O) and As-N(O) bonds, and the molecular fragment observed in time-of-flight secondary ion mass spectra confirmed that Hg and As coordinated with two oxygen and two nitrogen atoms in DPL.

View Article and Find Full Text PDF

Lacquer sap has been used by humans from antiquitywhen it was treated as a luxury item because of its desirable physical properties. In modern times, although access barriers are lower, lacquer is still considered to be rare and valuable. Thus, low quality, inexpensive Vietnamese and Myanmarese lacquers and cashew nutshell liquid are frequently added to the costly lacquer sap from Korea, China, and Japan.

View Article and Find Full Text PDF

In vivo tracking of C thymidine labeled mesenchymal stem cells using ultra-sensitive accelerator mass spectrometry.

Sci Rep

January 2021

Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea.

Despite the tremendous advancements made in cell tracking, in vivo imaging and volumetric analysis, it remains difficult to accurately quantify the number of infused cells following stem cell therapy, especially at the single cell level, mainly due to the sensitivity of cells. In this study, we demonstrate the utility of both liquid scintillator counter (LSC) and accelerator mass spectrometry (AMS) in investigating the distribution and quantification of radioisotope labeled adipocyte derived mesenchymal stem cells (AD-MSCs) at the single cell level after intravenous (IV) transplantation. We first show the incorporation of C-thymidine (5 nCi/ml, 24.

View Article and Find Full Text PDF

Background/aims: Coenzyme Q10 (CoQ10), is a promising antioxidant; however, low bioavailability owing to lipid-solubility is a limiting factor. We developed water-soluble CoQ10 (CoQ10-W) and compared its effects with conventional lipid-soluble CoQ10 (CoQ10-L) in an experimental model of chronic tacrolimus (Tac) nephropathy.

Methods: CoQ10-W was developed from a glycyrrhizic-carnitine mixed layer CoQ10 micelle based on acyltransferases.

View Article and Find Full Text PDF

In the present work, extended X-ray absorption fine-structure (EXAFS) investigations of CoFeSiB (x = 3, 5, 7) glassy ribbons were performed at the Co K-edge. The magnitude of the first peak of the Fourier transforms of the EXAFS signals is found to increase monotonically with increasing Si concentrations indicating the formation of the localized ordered structure at the atomic scale. The Co-Si coordination number (CN) increases at the expense of the CN of Co/Fe.

View Article and Find Full Text PDF

Substrate Specificities of GH8, GH39, and GH52 β-xylosidases from Bacillus halodurans C-125 Toward Substituted Xylooligosaccharides.

Appl Biochem Biotechnol

April 2021

Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.

Substrate specificities of glycoside hydrolase families 8 (Rex), 39 (BhXyl39), and 52 (BhXyl52) β-xylosidases from Bacillus halodurans C-125 were investigated. BhXyl39 hydrolyzed xylotriose most efficiently among the linear xylooligosaccharides. The activity decreased in the order of xylohexaose > xylopentaose > xylotetraose and it had little effect on xylobiose.

View Article and Find Full Text PDF