403 results match your criteria: "Advanced Analysis Center[Affiliation]"

A highly efficient system incorporates the real-time visualization of the two toxic molecules (HS and NH) and the recognition of corresponding transforms using a fluorescent sensor. In this paper, a dual-responsive probe (QS-DNP) based on methylquinolinium-salicyaldehyde-2,4-dinitrophenyl was developed that can simultaneously detect HS and NH at two independent fluorescent channels without signal crosstalk. QS-DNP showed excellent anti-interference, high selectivity, outstanding water solubility, low LOD values (HS: 51 nM; NH: 40 nM), low cytotoxicity, and mitochondrial localization properties.

View Article and Find Full Text PDF

The recent interests in bridging intriguing optical phenomena and thermal energy management has led to the demonstration of controlling thermal radiation with epsilon-near-zero (ENZ) and the related near-zero-index (NZI) optical media. In particular, the manipulation of thermal emission using phononic ENZ and NZI materials has shown promise in mid-infrared radiative cooling systems operating under low-temperature environments (below 100 °C). However, the absence of NZI materials capable of withstanding high temperatures has limited the spectral extension of these advanced technologies to the near-infrared (NIR) regime.

View Article and Find Full Text PDF

The oxygen-evolution reaction (OER) is a bottleneck in water splitting, which is a critical process for energy storage. In this study, the electrochemistry of Pb in the absence or presence of KFeO, as a soluble Fe source, is examined at pH ≈ 13. Our findings indicate that Pb exhibits limited catalytic activity for the OER under alkaline conditions.

View Article and Find Full Text PDF

Background: The Teotihuacan civilisation was the largest one in ancient Mesoamerica. The Teotihuacan city was born in the north-eastern Basin of Mexico around the second century BC, reached its peak in the fourth century AD, and had cultural influence throughout Mesoamerica. At its peak, the size of the city reached more than 20 km, and the total population is estimated to have increased from 100,000 to 200,000.

View Article and Find Full Text PDF

Isotopic characteristics (δC, δN, and δO) of honey from Bangladesh retail markets: Investigating sugar manipulation, botanical and geographical authentication.

Food Chem

March 2024

Food Safety and Quality Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh. Electronic address:

The study analyzed stable isotope composition (carbon, nitrogen, oxygen) of Bangladesh origin monofloral and multifloral honey for the first time to identify the C-4plant sugar adulteration, botanical and geographical differentiation. The C-4 sugar content (11.90 to 86.

View Article and Find Full Text PDF

Defects in plasma membrane repair can lead to muscle and heart diseases in humans. Tripartite motif-containing protein (TRIM)72 (mitsugumin 53; MG53) has been determined to rapidly nucleate vesicles at the site of membrane damage, but the underlying molecular mechanisms remain poorly understood. Here we present the structure of Mus musculus TRIM72, a complete model of a TRIM E3 ubiquitin ligase.

View Article and Find Full Text PDF

Large-scale solar-driven water splitting is a way to store energy, but it requires the development of practical and durable oxygen evolution reaction (OER) catalysts. The present paper aims to investigate the mechanism of the OER, local pH, high-valent metal ions, limitations, conversions, and details during the OER in the presence of FeNi foam using in situ surface-enhanced Raman spectroscopy. This research also explores the use of in situ surface-enhanced Raman spectroscopy for detecting species on foam surfaces during the OER.

View Article and Find Full Text PDF

We investigate the voltage control of magnetism in a van der Waals (vdW) heterostructure device consisting of two distinct vdW materials, the ferromagnetic FeGeTe and the ferroelectric InSe. It is observed that gate voltages applied to the FeGeTe/InSe heterostructure device modulate the magnetic properties of FeGeTe with significant decrease in coercive field for both positive and negative voltages. Raman spectroscopy on the heterostructure device shows voltage-dependent increase in the in-plane InSe and FeGeTe lattice constants for both voltage polarities.

View Article and Find Full Text PDF

Targeting SARM1 improves autophagic stress-induced axonal neuropathy.

Autophagy

January 2024

Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea.

AAV: adeno-associated virus; ATF3: activating transcription factor 3; ATG7: autophagy related 7; AVIL: advillin; cADPR: cyclic ADP ribose; CALC: calcitonin/calcitonin-related polypeptide; CMT: Charcot-Marie-Tooth disease; cKO: conditional knockout; DEG: differentially expressed gene; DRG: dorsal root ganglion; FE-SEM: field emission scanning electron microscopy; IF: immunofluorescence; NCV: nerve conduction velocity; PVALB: parvalbumin; RAG: regeneration-associated gene; ROS: reactive oxygen species; SARM1: sterile alpha and HEAT/Armadillo motif containing 1; : synapsin I.

View Article and Find Full Text PDF

An efficient and durable oxygen evolution reaction (OER) catalyst is necessary for the water-splitting process toward energy conversion. The OER through water oxidation reactions could provide electrons for HO, CO, and N reduction and produce valuable compounds. Herein, the FeNi (1:1 Ni/Fe) alloy as foam, after anodizing at 50 V in a two-electrode system in KOH solution (1.

View Article and Find Full Text PDF

Environmental forensics using stable and radioactive isotopes in naturally attenuated soil after phenol-leakage accidents.

J Hazard Mater

October 2023

Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea. Electronic address:

Phenol is a carcinogenic and hazardous chemical used in multiple industries and poses a high risk of chemical spills into the environment. To date, environmental forensic research has not focused on chemically remediated soils. In this study, an advanced environmental forensic analysis was performed on microbial communities and breakdown products of phenol, carbon stable isotopes, and radioactive isotopes in phenol-contaminated soil.

View Article and Find Full Text PDF

Solar fuel production by photosynthetic systems strongly relies on developing efficient and stable oxygen-evolution catalysts (OECs). Cerium(IV) ammonium nitrate (CAN) has been the most commonly used sacrificial oxidant to investigate OECs. Although many metal oxides have been extensively investigated as OECs in the presence of CAN, mechanistic studies were rarely reported.

View Article and Find Full Text PDF

Cerium(IV) ammonium nitrate (CAN) has been extensively used as a sacrificial oxidant to study water-oxidation catalysts (WOCs). Although nickel hydroxide has been extensively investigated as WOCs, the water-oxidation reaction (WOR) and mechanistic studies in the presence of CAN and nickel hydroxide were rarely performed. Herein, using in situ Raman spectroscopy, in situ X-ray absorption spectroscopy, and in situ electron paramagnetic resonance spectroscopy, WOR in the presence of CAN and β-Ni(OH) was investigated.

View Article and Find Full Text PDF

Understanding the initial growth process during atomic layer deposition (ALD) is essential for various applications employing ultrathin films. This study investigated the initial growth of ALD Ir films using tricarbonyl-(1,2,3-η)-1,2,3-tri(-butyl)-cyclopropenyl-iridium and O. Isolated Ir nanoparticles were formed on the oxide surfaces during the initial growth stage, and their density and size were significantly influenced by the growth temperature and substrate surface, which strongly affected the precursor adsorption and surface diffusion of the adatoms.

View Article and Find Full Text PDF

Vertical two-terminal synaptic devices based on resistive switching have shown great potential for emulating biological signal processing and implementing artificial intelligence learning circuitries. To mimic heterosynaptic behaviors in vertical two-terminal synaptic devices, an additional terminal is required for neuromodulator activity. However, adding an extra terminal, such as a gate of the field-effect transistor, may lead to low scalability.

View Article and Find Full Text PDF
Article Synopsis
  • Aurora kinase A (AURKA) is essential for cell division during mitosis and its activity is regulated by various interactions with cofactors.
  • Researchers identified a specific region in the cofactor CEP192 that directly interacts with AURKA, using quantitative binding studies and crystal structure analysis.
  • Disrupting this interaction in cells leads to mitotic defects, emphasizing the unique regulatory role of CEP192 compared to other cofactors like TPX2 in different cellular locations.
View Article and Find Full Text PDF

Recently, copper(II) complexes have been extensively investigated as oxygen-evolution reaction (OER) catalysts through a water-oxidation reaction. Herein, new findings regarding OER in the presence of a Cu(II) complex with 6,6'-dihydroxy-2,2'-bipyridine ligand are reported. Using scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, Raman spectroscopy, in situ visible microscopy, in situ visible spectroelectrochemistry, X-ray absorption spectroscopy, and electrochemistry, it is hypothesized that the film formed on the electrode's surface in the presence of this complex causes an appropriated matrix to produce Cu (hydr)oxide.

View Article and Find Full Text PDF

For decades, scanning/transmission electron microscopy (S/TEM) techniques have been employed to analyze shear bands in metallic glasses and understand their formation in order to improve the mechanical properties of metallic glasses. However, due to a lack of direct information in reciprocal space, conventional S/TEM cannot characterize the local strain and atomic structure of amorphous materials, which are key to describe the deformation of glasses. For this work, 4-dimensional-STEM (4D-STEM) is applied to map and directly correlate the local strain and the atomic structure at the nanometer scale in deformed metallic glasses.

View Article and Find Full Text PDF

Oxygen evolution reaction (OER) under acidic conditions becomes of significant importance for the practical use of a proton exchange membrane (PEM) water electrolyzer. In particular, maximizing the mass activity of iridium (Ir) is one of the maiden issues. Herein, the authors discover that the Ir-doped calcium copper titanate (CaCu₃Ti₄O₁₂, CCTO) perovskite exhibits ultrahigh mass activity up to 1000 A g for the acidic OER, which is 66 times higher than that of the benchmark catalyst, IrO .

View Article and Find Full Text PDF

CeXO (X: Fe, Mn) nanoparticles, synthesized using the coprecipitation route, were investigated for their structural, morphological, magnetic, and electrochemical properties using X-ray diffraction (XRD), field emission transmission electron microscopy (FE-TEM), dc magnetization, and cyclic voltammetry methods. The single-phase formation of CeO nanoparticles with FCC fluorite structure was confirmed by the Rietveld refinement, indicating the successful incorporation of Fe and Mn in the CeO matrix with the reduced dimensions and band gap values. The Raman analysis supported the lowest band gap of Fe-doped CeO on account of oxygen non-stoichiometry.

View Article and Find Full Text PDF
Article Synopsis
  • Tau oligomers are crucial in tau pathology, leading to neuronal cell death and disease transmission in the brain, making their prevention a key focus for treating tauopathies like Alzheimer's disease.
  • A new tau-BiFC platform was developed to detect and quantify tau oligomerization, which helped identify levosimendan as a strong candidate that inhibits this process effectively.
  • Levosimendan not only binds to tau proteins, preventing their aggregation but also reverses tau oligomerization, showing promise as a disease-modifying drug for tau-related disorders in mice models.
View Article and Find Full Text PDF

Enhanced performance of flexible quantum dot light-emitting diodes using a low-temperature processed PTAA hole transport layer.

Sci Rep

March 2023

Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin, 17104, Republic of Korea.

Low-temperature processing is important for improving the stability and performance of flexible quantum dot light-emitting diodes (QLEDs). In this study, QLEDs were fabricated using poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) as a suitable hole transport layer (HTL) material owing to its low-temperature processability and vanadium oxide as the low-temperature solution-processable hole injection layer material. The maximum luminance and highest current efficiency of the QLEDs on a glass substrate with an optimal PTAA HTL was 8.

View Article and Find Full Text PDF

Previously, we developed a technique to introduce a superfolder green fluorescent protein (sGFP) fusion protein directly into plant cells using atmospheric-pressure plasma. In this study, we attempted genome editing using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9) system using this protein introduction technique. As an experimental system to evaluate genome editing, we utilized transgenic reporter plants carrying the reporter genes L-(I-SceI)-UC and sGFP-waxy-HPT.

View Article and Find Full Text PDF

Enhancement in Power Conversion Efficiency of Perovskite Solar Cells by Reduced Non-Radiative Recombination Using a Brij C10-Mixed PEDOT:PSS Hole Transport Layer.

Polymers (Basel)

February 2023

Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si 24341, Republic of Korea.

Interface properties between charge transport and perovskite light-absorbing layers have a significant impact on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a polyelectrolyte composite that is widely used as a hole transport layer (HTL) to facilitate hole transport from a perovskite layer to an anode. However, PEDOT:PSS must be modified using a functional additive because PSCs with a pristine PEDOT:PSS HTL do not exhibit a high PCE.

View Article and Find Full Text PDF

Charge imbalance in quantum-dot light-emitting diodes (QLEDs) causes emission degradation. Therefore, many studies focused on improving hole injection into the QLEDs-emitting layer owing to lower hole conductivity compared to electron conductivity. Herein, CuCoO has a relatively higher hole conductivity than other binary oxides and can induce an improved charge balance.

View Article and Find Full Text PDF