2,380 results match your criteria: "Acs Sustainable Chemistry & Engineering[Journal]"
ACS Nano
December 2024
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
Electrocatalytic nitrogen reduction reaction (NRR) is a very attractive strategy for ammonia synthesis due to its energy savings and sustainability. However, the ammonia yield and Faraday efficiency of electrocatalytic nitrogen reduction have been challenges due to low nitrogen solubility and competitive hydrogen evolution reaction (HER) in electrolyte solution. Herein, inspired by the asymmetric wetting behavior, i.
View Article and Find Full Text PDFACS Nano
December 2024
School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Photodynamic therapy (PDT) using oxygen-dependent type II photosensitizers is frequently limited by the hypoxic microenvironment of solid tumors. Type I photosensitizers show oxygen-independent reactive oxygen species (ROS) generation upon light irradiation but still face the challenges of aggregation-caused quenching (ACQ) and low efficiency to produce ROS. Herein, we first prepare an efficient type I photosensitizer from a perylene derivative via intramolecular donor-acceptor binding and sulfur substitution, which significantly enhance intersystem crossing between singlet and triplet states and electron transfer capability.
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain.
The translation of inorganic-polymer hybrid battery materials from laboratory-scale to industry-relevant battery manufacturing processes is difficult due to their complexity, scalability, and cost and the limited fundamental knowledge that is available. Herein, we introduce a unique and compelling approach for the preparation of hybrid solid electrolytes based on an synthesized halide electrolyte (LiInCl) in the presence of a non-conducting polymer (styrene-ethylene-butylene-styrene block copolymer). This innovative approach delivers flexible self-standing membranes with good ionic conductivity (0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Environmental Science, Baylor University, Waco, Texas 76798, United States.
Engineered nanoparticles are precisely synthesized to exploit unique properties conferred by their small size and high surface area for environmental, biomedical, and agricultural applications. While these physical properties dictate functionality, they can also have various intended and unintended implications for biological systems. Both the particle size and shape influence cellular uptake.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
Endoscopes, a minimally invasive medical tool, are susceptible to impaired visibility due to the adhesion of biological fluids. However, traditional self-cleaning coatings face limitations in terms of transparency and sustainability, making it difficult to apply them to lenses. Inspired by the phospholipid layer of the eye, a reversible lubricating layer (RL-layer) with low-adhesion and high-transparency properties is reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Reactive oxygen species (ROS) photogenerated by two-dimensional (2D) nanomaterials provide a means of delivering persistent antibacterial activity in fluid media. Semiconducting molybdenum disulfide (MoS) nanosheets are an attractive option for exploiting such activity by using visible light. However, the tendency of MoS nanosheets in suspension to restack or otherwise aggregate remains a critical obstacle, as it results in the loss of the desired photoactivity.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States.
Metal oxide semiconductor-activated photocatalysis has become a promising sustainable technology for the mitigation of emerging organic pollutants. The rational design of a photocatalyst heterojunction allows the degradation of a broad range of organic contaminants. Herein, we optimized hydrothermal approaches for the facial synthesis of well-defined BiOBr/CuO heterojunction photocatalysts.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Mechanical Engineering, State University of Maringá, Colombo 5790, 87020-900 Maringá, PR, Brazil.
Polyurethane foams (PFs) are widely used in mattresses, upholstery, and insulation, but disposal is difficult due to the disintegration time and environmental hazards of synthetic polyol. This work investigates a sustainable alternative by replacing poly(ethylene glycol) (PEG) with corn cob fibers and incorporating antibacterial silver nanoparticles (AgNPs). Corn cob fibers and sodium hydroxide-treated fibers were used to make foams, with corn cob fibers substituting PEG at 5-30 wt %.
View Article and Find Full Text PDFACS Synth Biol
December 2024
Department of Biocatalysis, Institute of Catalysis, ICP-CSIC, 28049 Madrid, Spain.
Galactose oxidase (GOase) is a versatile biocatalyst with a wide range of potential applications, ranging from synthetic chemistry to bioelectrochemical devices. Previous GOase engineering by directed evolution generated the M-RQW mutant, with unprecedented new-to-nature oxidation activity at the C6-OH group of glucose, and a mutational backbone that helped to unlock its promiscuity toward other molecules, including secondary alcohols. In the current study, we have used the M-RQW mutant as a starting point to engineer a set of GOases that are very thermostable and that are easily produced at high titers in yeast, enzymes with latent activities applicable to sustainable chemistry.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany.
ACS Appl Mater Interfaces
December 2024
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
Ion-selective membranes serve as key materials for reverse electrodialysis (RED) technology in osmotic energy harvesting, and the search for a class of membranes that are economical, highly robust, and sustainable has been a relentless goal for researchers. In this work, all-natural biomass membranes (reed membranes) are often used as a flute diaphragm, which makes the flute produce a brighter and crisper sound, presenting high strength and elasticity. Ultrathin natural reed membranes (thickness of ≈4.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.
Electroactive microorganisms such as can couple organic electron donor oxidation to the respiration of electrode surfaces, colonizing them in the process. These microbes can also reduce soluble metal ions, such as soluble Pd, resulting in metallic nanoparticle (NP) synthesis. Such NPs are valuable catalysts for industrially relevant chemical production; however, their chemical and solid-state syntheses are often energy-intensive and result in hazardous byproducts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China.
5-hydroxymethylfurfural (HMF) is one of the most promising biomass-based chemicals that is used to produce many kinds of important compounds. Especially, the selective conversion of HMF to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), an important chemical feedstock, has high industrial significance but is technically challenging. In this study, we present a high-performance photocatalyst for selective oxidation of HMF to HMFCA.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemical Engineering, College of Engineering, King Saud University (KSU), P.O. Box 800, Riyadh 11421, Saudi Arabia.
Herein, a novel nanocomposite (carbonized chitosan-zinc oxide-magnetite, CCZF) was developed to effectively remove toxic elements in water remediation. Combining the high adsorption capacities of chitosan with the magnetic properties of magnetite and the chemical stability of zinc oxide, the combination of these unique properties makes it an efficient and versatile material that offers a sustainable solution for water purification. The (CCZF) nanocomposite was synthesized through the coprecipitation method and characterized using various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and zeta potential analysis.
View Article and Find Full Text PDFACS Org Inorg Au
December 2024
Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Mölndal, Sweden.
Electro-organic chemistry presents a promising frontier in drug discovery and early development, facilitating novel reactivity aligned with green chemistry principles. Despite this, electrochemistry is not widely used as a synthesis and manufacturing tool in drug discovery or development. This overview seeks to identify key areas that require additional research to make synthetic electrochemistry more accessible to chemists in drug discovery and early development and provide potential solutions.
View Article and Find Full Text PDFACS Org Inorg Au
December 2024
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
Carbon dioxide (CO) is an abundant and useful C feedstock for electrocarboxylation, a process that incorporates a carboxyl moiety into an organic molecule. In this work, three first-row transition metal CO reduction electrocatalysts, NiPDI (), NiTPA (), and Fe(salenCl) (), were explored as electrocarboxylation catalysts with benzyl chloride as a substrate. The cyclic voltammograms of all three catalysts showed current enhancements in the presence of benzyl chloride under a CO atmosphere.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
Intelligent controlled-release nanopesticides have been a crucial tactic in advanced precision agriculture during the past few years, which can improve pesticide utilization and reduce environmental pollution. Herein, a novel hydroxypropyl methylcellulose-based nanopesticide carrier (PCH) with pH-/enzyme-/near-infrared multiple responses was constructed by the initial cross-linking with dimethyl diallyl ammonium chloride and the subsequent copper ion chelation and polydopamine coating. Avermectin (Av) was further loaded to create the intelligent pesticide release system (APCH) by antisolvent precipitation.
View Article and Find Full Text PDFACS Sustain Chem Eng
December 2024
Department for Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.
ACS Mater Lett
December 2024
Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
ACS Appl Mater Interfaces
December 2024
Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa.
ACS Sustain Resour Manag
November 2024
Department of Inorganic Chemistry and Materials Sciences Institute of Seville (ICMS), University of Seville-CSIC, Seville 41092, Spain.
ACS Phys Chem Au
November 2024
Institut Laue-Langevin, 38000 Grenoble, France.
ACS Phys Chem Au
November 2024
Rosalind Franklin Institute, Harwell OX11 0QX, Oxfordshire, United Kingdom.
ACS Appl Bio Mater
December 2024
Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
We fabricated composite membranes containing inorganic nanosheets (NSs) and polymers and demonstrated their outstanding antibacterial performance against several opportunistic pathogens. Layered α-zirconium phosphate [Zr(HPO), α-ZrP] as a pristine compound of NS was exfoliated by ion-exchanging protons in the interlayer space of α-ZrP with bulky tetraalkylammonium ions (TRA: R = butyl, hexyl, and octyl). During the exfoliation process, TRA was electrostatically adsorbed onto α-ZrP NS with a negative surface charge (ZrP-TRA-NS).
View Article and Find Full Text PDFACS Nano
December 2024
Department of Physics, National Taiwan University, Taipei 10617, Taiwan.