38 results match your criteria: "Access to Advanced Health Institute[Affiliation]"

Intestinal epithelial cell NCoR deficiency ameliorates obesity and metabolic syndrome.

Acta Pharm Sin B

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.

View Article and Find Full Text PDF

Dry powders offer the potential to increase stability and reduce cold-chain requirements associated with the distribution of vaccines and other thermally sensitive products. The Alberta Idealized Nasal Inlet (AINI) is a representative geometry for characterization of nasal products that may prove useful in examining intranasal delivery of powders. Spray-dried trehalose powders were loaded at 10, 20, and 40 mg doses into active single-dose devices.

View Article and Find Full Text PDF

Introduction: Dozens of vaccines have been approved or authorized internationally in response to the ongoing SARS-CoV-2 pandemic, covering a range of modalities and routes of delivery. For example, mucosal delivery of vaccines via the intranasal (i.n.

View Article and Find Full Text PDF

Safety and implementation of a phase 1 randomized GLA-SE-adjuvanted CH505TF gp120 HIV vaccine trial in newborns.

medRxiv

October 2024

University of the Witwatersrand, Perinatal HIV Research Unit, Faculty of Health Sciences, Johannesburg, South Africa; South African Medical Research Council, Cape Town, South Africa.

Background: The neonatal immune system is uniquely poised to generate broadly neutralizing antibodies (bnAbs) and thus infants are ideal for evaluating HIV vaccine candidates. We present the design and safety of a novel glucopyranosyl lipid A (GLA)-stable emulsion (SE) adjuvant admixed with a first-in-infant CH505 transmitter-founder (CH505TF) gp120 immunogen designed to induce precursors for bnAbs against HIV.

Methods: HVTN 135 is a phase I randomized, placebo-controlled trial of CH505TF+GLA-SE or placebo.

View Article and Find Full Text PDF

Exploring yeast glucans for vaccine enhancement: Sustainable strategies for overcoming adjuvant challenges in a SARS-CoV-2 model.

Eur J Pharm Biopharm

December 2024

CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal. Electronic address:

Vaccine adjuvants are important for enhancing vaccine efficacy, and although aluminium salts (Alum) are the most used, their limited ability to induce specific immune responses has spurred the search for new adjuvants. However, many adjuvants fail during product development due to manufacturability, supply, stability, or safety concerns. This work hypothesizes that protein-free yeast glucans can be used as vaccine adjuvants due to their known immunostimulatory activity and high abundancy.

View Article and Find Full Text PDF
Article Synopsis
  • - The development of the ID93+GLA-SE vaccine aims to reduce tuberculosis (TB) recurrence and tackle drug-resistant strains, with plans for a phase 2b efficacy trial for patients in TB treatment.
  • - A study using samples from earlier ID93+GLA-SE trials found changes in blood gene expression post-vaccination, including significant immune response indicators at different time points, influenced by dosage and participant sex.
  • - Findings highlight the complex interactions in the immune system when responding to the ID93+GLA-SE vaccine and underline the importance of vaccination timing and dosage on effectiveness.
View Article and Find Full Text PDF
Article Synopsis
  • Understanding the dynamics of oral KSHV shedding can help assess transmission risks and aid the development of vaccines for the virus associated with Kaposi sarcoma (KS).
  • In a study of Ugandan adults, KSHV was found more frequently among those with KS, with shedding rates being similar regardless of HIV status; however, persistent shedding correlated with higher viral loads.
  • The research indicates that KSHV shedding is highly variable among individuals, emphasizing the need for further investigation into the factors influencing these patterns in both KS and HIV-affected populations.
View Article and Find Full Text PDF

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140 formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding, and immunogenicity in a first-in-healthy adult (n = 17), randomized, and placebo-controlled trial (HVTN 137A).

View Article and Find Full Text PDF

Efficient cattle production and provision of animal-sourced foods in much of Africa is constrained by vector-borne bacterial and protozoal diseases. Effective vaccines are not currently available for most of these infections resulting in a continuous disease burden that limits genetic improvement. We tested whether stimulation of innate immunity using the Toll-like Receptor (TLR) 7 agonist imiquimod, formulated with saponin and water-in-oil emulsion, would protect against morbidity and mortality due to Anaplasma marginale, a tick-borne pathogen of cattle highly endemic in west Africa.

View Article and Find Full Text PDF

, the causative agent of amebiasis, is one of the top three parasitic causes of mortality worldwide. However, no vaccine exists against amebiasis. Using a lead candidate vaccine containing the LecA fragment of Gal-lectin and GLA-3M-052 liposome adjuvant, we immunized rhesus macaques via intranasal or intramuscular routes.

View Article and Find Full Text PDF

Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques.

View Article and Find Full Text PDF

Castleman disease patients report mild COVID-19 symptoms and mount a humoral response to SARS-CoV-2 vaccination.

Blood Neoplasia

March 2024

Center for Cytokine Storm Treatment & Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Article Synopsis
  • COVID-19 has significantly impacted patients with weakened immune systems, including those with Castleman disease (CD), but treatment options like IL6 inhibition may help manage severe symptoms.
  • A survey conducted in April 2021 among 300 CD patients showed comparable SARS-CoV-2 infection rates, vaccination rates, and vaccine side effects to the general U.S. population.
  • The findings indicate that CD patients, despite being on immunosuppressive therapies, have a similar ability to respond to COVID-19 vaccinations and do not face a higher risk of severe outcomes from the virus.
View Article and Find Full Text PDF

Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells.

View Article and Find Full Text PDF

ELISA with recombinant antigen Lb6H validated for the diagnosis of American tegumentary leishmaniasis.

PLoS One

June 2024

Faculdade de Medicina, Instituto de Medicina Tropical de Sao Paulo, Laboratório de Soroepidemiologia, Universidade de Sao Paulo, Sao Paulo, São Paulo, Brazil.

American tegumentary leishmaniasis (ATL) diagnosis is an open question, and the search for a solution is urgent. The available tests that detect the etiological agent of the infection are specific for ATL diagnosis. However, they present disadvantages, such as low sensitivity and the need for invasive procedures to obtain the samples.

View Article and Find Full Text PDF

Vaccine induction of heterologous HIV-1-neutralizing antibody B cell lineages in humans.

Cell

June 2024

Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, USA; Duke Global Health Institute, Duke School of Medicine, Durham, NC 27710, USA. Electronic address:

A critical roadblock to HIV vaccine development is the inability to induce B cell lineages of broadly neutralizing antibodies (bnAbs) in humans. In people living with HIV-1, bnAbs take years to develop. The HVTN 133 clinical trial studied a peptide/liposome immunogen targeting B cell lineages of HIV-1 envelope (Env) membrane-proximal external region (MPER) bnAbs (NCT03934541).

View Article and Find Full Text PDF

Mutation-guided vaccine design: A process for developing boosting immunogens for HIV broadly neutralizing antibody induction.

Cell Host Microbe

May 2024

Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunology, Duke University School of Medicine, Durham, NC 27710, USA. Electronic address:

Article Synopsis
  • Scientists are trying to create a vaccine for HIV-1 that makes special antibodies called broadly neutralizing antibodies (bnAbs) that can fight the virus.*
  • They found a way to design important boosters that help these antibodies develop stronger and better by using unique methods with special mice.*
  • Their research shows that both protein and mRNA boosters can successfully help create these powerful antibodies, which is an important step toward making an effective HIV-1 vaccine.*
View Article and Find Full Text PDF

Characterizing regional drug delivery within the nasal airways.

Expert Opin Drug Deliv

April 2024

Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.

Introduction: The nose has been receiving increased attention as a route for drug delivery. As the site of deposition constitutes the first point of contact of the body with the drug, characterization of the regional deposition of intranasally delivered droplets or particles is paramount to formulation and device design of new products.

Areas Covered: This review article summarizes the recent literature on intranasal regional drug deposition evaluated in vivo, in vitro and in silico, with the aim of correlating parameters measured in vitro with formulation and device performance.

View Article and Find Full Text PDF

Background: HIV-1 vaccine development is a global health priority. Broadly neutralizing antibodies (bnAbs) which target the HIV-1 gp41 membrane-proximal external region (MPER) have some of the highest neutralization breadth. An MPER peptide-liposome vaccine has been found to expand bnAb precursors in monkeys.

View Article and Find Full Text PDF

Kilo-Scale GMP Synthesis of Renewable Semisynthetic Vaccine-Grade Squalene.

Org Process Res Dev

December 2023

Amyris Inc, 5885 Hollis St, Suite 100, Emeryville, CA 94608, USA.

Emulsions of the triterpene squalene ((6,10,14,18)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene, CAS 111-02-4) have been used as adjuvants in influenza vaccines since the 1990s. Traditionally sourced from shark liver oil, the overfishing of sharks and concomitant reduction in the oceanic shark population raises sustainability issues for vaccine adjuvant grade squalene. We report a semisynthetic route to squalene meeting current pharmacopeial specifications for use in vaccines that leverages the ready availability of -β-farnesene ((6)-7,11-dimethyl-3-methylene-1,6,10-dodecatriene, CAS 18794-84-8), manufactured from sustainable sugarcane via a yeast fermentation process.

View Article and Find Full Text PDF

Seasonal influenza vaccines must be updated annually and suboptimally protect against strains mismatched to the selected vaccine strains. We previously developed a subunit vaccine antigen consisting of a stabilized trimeric influenza A group 1 hemagglutinin (H1) stem protein that elicits broadly neutralizing antibodies. Here, we further optimized the stability and manufacturability of the H1 stem antigen (H1 stem v2, also known as INFLUENZA G1 mHA) and characterized its formulation and potency with different adjuvants in vitro and in animal models.

View Article and Find Full Text PDF

Screening of Oligomeric (Meth)acrylate Vaccine Adjuvants Synthesized via Catalytic Chain Transfer Polymerization.

Polymers (Basel)

September 2023

Centre for Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK.

This report details the first systematic screening of free-radical-produced methacrylate oligomer reaction mixtures as alternative vaccine adjuvant components to replace the current benchmark compound squalene, which is unsustainably sourced from shark livers. Homo-/co-oligomer mixtures of methyl, butyl, lauryl, and stearyl methacrylate were successfully synthesized using catalytic chain transfer control, where the use of microwave heating was shown to promote propagation over chain transfer. Controlling the mixture material properties allowed the correct viscosity to be achieved, enabling the mixtures to be effectively used in vaccine formulations.

View Article and Find Full Text PDF

Idiopathic multicentric Castleman disease (iMCD) is a rare hematologic disorder with an unknown etiology. Clinical presentation is heterogeneous, ranging from mild constitutional symptoms with lymphadenopathy to life-threatening multiorgan dysfunction. International, consensus treatment guidelines developed in 2018 relied upon a limited number of clinical trials and small case series; however, to our knowledge, real-world performance of these recommendations has not been subsequently studied.

View Article and Find Full Text PDF

Over the last several years, there has been increased interest from academia and the pharmaceutical/biotech industry in the development of vaccine adjuvants for new and emerging vaccine modalities. Despite this, vaccine adjuvant development still has some of the longest timelines in the pharmaceutical space, from discovery to clinical approval. The reasons for this are manyfold and range from complexities in translation from animal to human models, concerns about safety or reactogenicity, to challenges in sourcing the necessary raw materials at scale.

View Article and Find Full Text PDF

Type I interferons (IFN-I) are critical mediators of innate control of viral infections but also drive the recruitment of inflammatory cells to sites of infection, a key feature of severe coronavirus disease 2019. Here, IFN-I signaling was modulated in rhesus macaques (RMs) before and during acute SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection using a mutated IFN-α2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. IFNmod treatment in uninfected RMs was observed to induce a modest up-regulation of only antiviral IFN-stimulated genes (ISGs); however, in SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs.

View Article and Find Full Text PDF

Enhancement of antivenom immune responses in horses through adjuvant technology improves antivenom production efficiency, but substantial local reactogenicity associated with some traditional veterinary adjuvants limits their usability. To explore modern adjuvant systems suitable for generating antivenom responses in horses, we first assessed their physicochemical compatibility with Bothrops asper snake venom. Liposome and nanoparticle aluminum adjuvants exhibited changes in particle size and phospholipid content after mixing with venom, whereas squalene emulsion-based adjuvants remained stable.

View Article and Find Full Text PDF