7,617 results match your criteria: "Abdullah University of Science and Technology[Affiliation]"

Background: Avicennia marina ecosystems are critical for coastal protection, water quality enhancement, and biodiversity support. These unique ecosystems thrive in extreme saline conditions and host a diverse microbiome that significantly contributes to plant resilience and growth. Global food security is increasingly threatened by crop yield losses due to abiotic stresses, including saline soils.

View Article and Find Full Text PDF

Mediterranean seagrasses provide essential coastal protection under climate change.

Sci Rep

December 2024

Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (IEO-CSIC), Palma, Spain.

Seagrasses are vital in coastal areas, offering crucial ecosystem services and playing a relevant role in coastal protection. The decrease in the density of Mediterranean seagrasses over recent decades, due to warming and anthropogenic stressors, may imply a serious environmental threat. Here we quantify the role of coastal impact reduction induced by seagrass presence under present and future climate.

View Article and Find Full Text PDF

Objective: Inositols play significant roles in biological systems. Myo-inositol (MI), the most prevalent isomer, functions as an osmolyte and mediates cell signal transduction. Other notable isomers include Scyllo-inositol (SCI) and D-Chiro-inositol (DCHI).

View Article and Find Full Text PDF

Si-H Hydrosilane Reducing Agents for Size- and Shape-Controlled InAs Colloidal Quantum Dots.

Adv Mater

January 2025

Center for Renewable Energy and Storage Technologies (CREST),  Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.

Article Synopsis
  • A new reducing agent based on hydrosilanes (Si-H) allows for synthesis of high-quality, monodisperse InAs CQDs with tunable excitonic peaks, avoiding harmful compounds that cause surface oxidation.
  • These CQDs exhibit excellent optoelectronic properties, leading to photodetectors with low dark current, good quantum efficiency, and fast photoresponse times, while eliminating a major barrier related to (TMS)As usage
View Article and Find Full Text PDF

The temperate climate-adapted brown hare (Lepus europaeus) and the cold-adapted mountain hare (Lepus timidus) are closely related and interfertile species. However, their skin fibroblasts display distinct gene expression profiles related to fundamental cellular processes. This indicates important metabolic divergence between the two species.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed the adsorption of lithium (Li) and magnesium (Mg) on various forms of hexa-hexabenzocoronene (HBC) and its doped variants using density functional theory, revealing strong interactions.
  • The results indicated that doped HBC molecules (with N/BN/Si) created a more electron-rich environment, resulting in varying adsorption energies for Li and Mg, with the energies ranging from -247.44 to -47.65 kcal mol.
  • The research found that the doped nanoflakes contributed to energy efficiency in lithium-ion and magnesium-ion batteries, achieving the highest voltage outputs of 1.90 V and 5.29 V, respectively.
View Article and Find Full Text PDF

Integrating Interactive Ir Atoms into Titanium Oxide Lattice for Proton Exchange Membrane Electrolysis.

Adv Mater

January 2025

Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.

Iridium (Ir)-based oxide is the state-of-the-art electrocatalyst for acidic water oxidation, yet it is restricted to a few Ir-O octahedral packing modes with limited structural flexibility. Herein, the geometric structure diversification of Ir is achieved by integrating spatially correlated Ir atoms into the surface lattice of TiO and its booting effect on oxygen evolution reaction (OER) is investigated. Notably, the resultant i-Ir/TiO catalyst exhibits much higher electrocatalytic activity, with an overpotential of 240 mV at 10 mA cm and excellent stability of 315 h at 100 mA cm in acidic electrolyte.

View Article and Find Full Text PDF

Zeolite membrane with sub-nanofluidic channels for superior blue energy harvesting.

Nat Commun

December 2024

Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged membranes, typically composed of amorphous materials that suffer from low power density due to their disordered structure and low charge density. Crystalline materials, with inherently ordered porous structures, offer a promising alternative for overcoming these limitations.

View Article and Find Full Text PDF

This study demonstrates the controllable switching of skyrmion helicity using spin-orbit torque, enhanced by thermal effects. Electric current pulses applied to a [Pt/Co]/Ru/[Co/Pt] multilayer stripe drive skyrmions in a direction opposite to the current flow. Continuous pulsing results in an unexpected reversal of skyrmion motion.

View Article and Find Full Text PDF

Water microdroplets containing 100 μM HAuCl have been shown to reduce gold ions into gold nanoparticles spontaneously. It has been suggested that this chemical transformation takes place exclusively at the air-water interface of microdroplets, albeit without mechanistic insights. We compared the fate of several metallic salts in water, methanol, ethanol, and acetonitrile in the bulk phase and microdroplet geometry (sprays).

View Article and Find Full Text PDF

Editorial: Microbial-driven carbon turnover from dry-wet cycling regions.

Front Microbiol

November 2024

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.

View Article and Find Full Text PDF

Gallium-doped zinc oxide (GZO) has demonstrated significant potential in gas-sensing applications due to its enhanced electrical and chemical properties. This study focuses on the synthesis, characterization, and gas-sensing performance of GZO nanoparticles (NPs), specifically targeting CO₂ detection, which is crucial for environmental monitoring and industrial safety. The GZO samples were synthesized using a sol-gel method, and their crystal structure was determined through X-ray diffraction (XRD), confirming the successful incorporation of gallium into the ZnO lattice.

View Article and Find Full Text PDF

Skipped dienes are among the most prevalent motifs in a vast array of natural products, medicinal compounds, and fatty acids. Herein, we disclose a straightforward one-step reductive protocol under Co/PC for the synthesis of diverse 1,4-dienes with excellent regio- and stereoselectivity. The protocol employs allenyl or allyl carbonate as π-allyl source, allowing for the direct synthesis of skipped diene with a broad range of alkynes including terminal alkynes, propargylic alcohols, and internal alkynes.

View Article and Find Full Text PDF

A neuromorphic event data interpretation approach with hardware reservoir.

Front Neurosci

November 2024

SAMA Labs, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Event cameras have shown unprecedented success in various computer vision applications due to their unique ability to capture dynamic scenes with high temporal resolution and low latency. However, many existing approaches for event data representation are typically algorithm-based, limiting their utilization and hardware deployment. This study explores a hardware event representation approach for event data utilizing a reservoir encoder implemented with analog memristor.

View Article and Find Full Text PDF

Filamentous structures exert biological functions mediated by multivalent interactions with their counterparts in sharp contrast with spherical ones. The physicochemical properties and unique behaviors of nanofilaments that are associated with multivalent interaction with protein are poorly understood. Here, peptide-based nanofilaments containing different homotetrapeptidic inserts are reported and their protein adsorption and biological fates are tested.

View Article and Find Full Text PDF

Engineering Metal-MOF Interfaces for Selective CO₂ Hydrogenation to Methanol.

Chemistry

January 2025

Multiscale Reaction Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia Department.

The hydrogenation of CO₂ to methanol is a promising pathway toward sustainable fuel production and carbon recycling. A key factor in the efficiency of this process lies in the interaction between the metal catalyst and its support. Metal-Organic Frameworks (MOFs) have emerged as highly effective platforms due to their tunable structures, large surface areas, and ability to form stable interfaces with single-atom metals or metal nanoparticles.

View Article and Find Full Text PDF

Increasing extreme climatic events threaten the functioning of terrestrial ecosystems. Because soil microbes govern key biogeochemical processes, understanding their response to climate extremes is crucial in predicting the consequences for ecosystem functioning. Here we subjected soils from 30 grasslands across Europe to four contrasting extreme climatic events under common controlled conditions (drought, flood, freezing and heat), and compared the response of soil microbial communities and their functioning with those of undisturbed soils.

View Article and Find Full Text PDF

Well-Defined Block Copolymer Vitrimer Membranes.

Small

January 2025

Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

A well-defined α,ω-dialdehyde polyisoprene-b-polystyrene block copolymer, synthesized using anionic polymerization high-vacuum techniques, is employed to prepare vitrimers with tris(2-aminoethyl)amine as the cross-linking agent. The vitrimer network, featuring dynamic imine cross-links, results in robust, flexible, and solvent-resistant films, which are applicable in thin film composite membranes. These vitrimer membranes, with molecular weight cut-offs in the nanofiltration range, are successfully used for organic solvent separation and evaluated for gas separation.

View Article and Find Full Text PDF

MXenes have excellent properties as electrode materials in energy storage devices or fuel cells. In bioelectrochemical systems (for wastewater treatment and energy harvesting), MXenes can have antimicrobial characteristics in some conditions. Here, different intercalation and delamination approaches to obtain TiCT MXene flakes with different terminal groups and lateral dimensions are comprehensively investigated.

View Article and Find Full Text PDF

Green turtle tracking leads the discovery of seagrass blue carbon resources.

Proc Biol Sci

November 2024

Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia.

Seagrass meadows are natural carbon sinks, and their conservation and restoration play a crucial role in climate change mitigation and adaptation. However, blue carbon projects are hindered, in most nations, by major gaps in understanding the distribution and extent of seagrasses. Here, we show how satellite tracking of green turtles () provided a major advance in identifying novel seagrass blue carbon resources in the Red Sea.

View Article and Find Full Text PDF

Conventional gas sensors encounter a significant obstacle in terms of power consumption, making them unsuitable for integration with the next generation of smartphones, wireless platforms, and the Internet of Things (IoT). Energy-efficient gas sensors, particularly self-powered gas sensors, can effectively tackle this problem. The researchers are making significant strides in advancing photovoltaic self-powered gas sensors by employing diverse materials and their compositions.

View Article and Find Full Text PDF

Terpenoids play key roles in cellular metabolism and can have specialized functions. Their heterologous production in microbial hosts offers an alternative to natural extraction. Here, we developed a subcellular engineering approach in the model green alga Chlamydomonas reinhardtii by targeting both sesquiterpenoid synthases and cytochrome P450s (CYPs) to the plastid, exploiting its photosynthetic electron transport chain to drive CYP-mediated oxidation without reductase partners.

View Article and Find Full Text PDF
Article Synopsis
  • Patchy data on litter decomposition in wetlands limits understanding of carbon storage, prompting a global study involving over 180 wetlands across multiple countries and climates.
  • The study found that freshwater wetlands and tidal marshes had more organic matter remaining after decay, indicating better potential for carbon preservation in these areas.
  • Elevated temperatures positively affect the decomposition of resistant organic matter, with projections suggesting an increase in decay rates by 2050; however, the impact varies by ecosystem type and highlights the need to recognize both local and global factors influencing carbon storage.
View Article and Find Full Text PDF