2 results match your criteria: "Aalto University School of Science (formerly Helsinki University of Technology)[Affiliation]"
Adv Mater
May 2013
Department of Applied Physics, Aalto University School of Science (formerly Helsinki University of Technology), Aalto, Espoo, Finland.
Mechanically excellent native cellulose nanofibers that are cleaved from plant cell walls have been modified by functionalized few-walled carbon nanotubes for hybrid nanofiber/nanotube aerogels. They show elastic mechanical behavior in combination with reversible electrical response under compression allowing responsive conductivity and pressure sensing. The concept combines wide availability of nanocellulosics and electrical functionality of carbon nanotubes synergistically.
View Article and Find Full Text PDFBiomacromolecules
November 2012
Molecular Materials, Department of Applied Physics, Aalto University School of Science (formerly Helsinki University of Technology), P.O. Box 15100, FI-02015 Espoo, Finland.
We show double smectic-like self-assemblies in the solid state involving alternating layers of different polypeptide α-helices. We employed rod-coil poly(γ-benzyl l-glutamate)-block-poly(l-lysine) (PBLG-b-PLL) as the polymeric scaffold, where the PLL amino residues were ionically complexed to di-n-butyl phosphate (diC4P), di(2-ethylhexyl) phosphate (diC2/6P), di(2-octyldodecyl) phosphate (diC8/12P), or di-n-dodecyl phosphate (diC12P), forming PBLG-b-PLL(diC4P), PBLG-b-PLL(diC2/6P), PBLG-b-PLL(diC8/12P), and PBLG-b-PLL(diC12P) complexes, respectively. The complexes contain PBLG α-helices of fixed diameter and PLL-surfactant complexes adopting either α-helices of tunable diameters or β-sheets.
View Article and Find Full Text PDF