224 results match your criteria: "AUVA Research Center[Affiliation]"

Objective: Spinal cord injury (SCI) is a severe and permanent nerve damage condition that poses significant burdens on individuals and society. Various therapeutic approaches have been explored to mitigate the consequences of SCI. Tissue engineering and regenerative medicine have emerged as a promising avenue for addressing this issue.

View Article and Find Full Text PDF

Breaking the constraints of thrombin during storage and in vivo applications remains challenging because of its low stability and sensitivity to environmental temperature and acidity. Herein, an artificial plateletoid is developed for in situ thrombin generation through a co-incubation approach with plasma in vitro, utilizing a silk fibroin/Ca interface, to enhance the activity and stability of the generated thrombin. Notably, the enzymatic activity of the plateletoid thrombin platform is as high as 30 U g, leading to rapid clotting within 55 s, and it persisted for at least 90 days at as high as 37 °C.

View Article and Find Full Text PDF

Background: Limited availability and side effects of opioids have led to an increased use of non-opioid analgesia in animal disease models. However, by affecting the immune-inflammatory reactions, analgesia may disrupt the resolution of the host inflammation and modulate the survival in septic animals. This study used a clinically relevant sepsis mouse model of peritoneal contamination and infection (PCI) to investigate the antinociceptive and anti-inflammatory properties of two non-opioid analgesics.

View Article and Find Full Text PDF

Along with a paradigm shift in looking at soft tissue fillers from space-filling to bioactive materials, decellularized extracellular matrix (DEM) fillers have gained more attention considering their superior bioactivity. However, the complex mechanisms that govern the interaction between host tissues and DEMs have been partially understood. This review first covers the mechanisms that determine immunogenicity, angiogenesis and vasculogenesis, and recellularization and remodeling after DEM implantation into host tissue, with a particular focus on related findings from filler materials.

View Article and Find Full Text PDF

Drug delivery under cover of erythrocytes extends drug half-life: A thrombolytic targeting therapy utilizing microenvironment-responsive artificial polysaccharide microvesicles.

Carbohydr Polym

November 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Department of Geriatric Medicine, Wenzhou Ouhai District Chinese and Western Medical Association Hospital, Wenzhou 325000, China. Electronic address:

The development of thrombolytic drug carriers capable of thrombus-targeting, prolonged circulation time, intelligent responsive release, and the ability to inhibit thrombotic recurrences remains a promising but significant challenge. To tackle this, an artificial polysaccharide microvesicle drug delivery system (uPA-CS/HS@RGD-ODE) was constructed. It is composed of cationic chitosan and anionic heparin assembled in a layer by layer structure, followed by surface modification using RGD peptide and 2-(N-oxide-N,N-diethylamino) ethylmethacrylate (ODE) before encapsulation of urokinase-type plasminogen activator (uPA).

View Article and Find Full Text PDF

Magnetic-navigable silk fibroin microneedles for oral drug delivery: Ensuring long-lasting helicobacter pylori eradication and rapid hemostasis in the stomach.

Int J Biol Macromol

August 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Ludwig Boltzmann Institute for Traumatology, AUVA Research Center, Vienna 1200, Austria. Electronic address:

The Helicobacter pylori infection in the stomach is the key reason for gastric mucosal bleeding. Eliminating gastric Helicobacter pylori by oral treatment remains difficult due to the presence of the gastric mucosal layer, which acts as a physical barrier to drugs via oral administration. In this study, a magnetic-navigable microneedle drug delivery platform (MNsD) for oral administration, featuring differential dual-mode drug release rate, was designed to fulfil rapid gastric hemostasis and overcome the gastric barriers for long-lasting Helicobacter pylori inhibition in stomach.

View Article and Find Full Text PDF

This case report describes a novel and unique combination of both electromagnetic and electrohydraulic focused extracorporeal shockwave therapy (ESWT) and extracorporeal magnetotransduction therapy (EMTT) for accelerated healing in a calcaneus epiphyseal fracture with delayed healing in an adolescent Parkour athlete. After a 2.5m jump, the 14-year-old experienced significant heel pain, however avoided telling his parents.

View Article and Find Full Text PDF

pH-Responsive Theranostic Colloidosome Drug Carriers Enable Real-Time Imaging of Targeted Thrombolytic Process with Near-Infrared-II for Deep Venous Thrombosis.

Research (Wash D C)

May 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.

Thrombosis can cause life-threatening disorders. Unfortunately, current therapeutic methods for thrombosis using injecting thrombolytic medicines systemically resulted in unexpected bleeding complications. Moreover, the absence of practical imaging tools for thrombi raised dangers of undertreatment and overtreatment.

View Article and Find Full Text PDF

Multiphoton lithography with protein photoresists.

Mater Today Bio

April 2024

Department of Medical Engineering, University of Applied Sciences Upper Austria, Garnisonstraße 21, 4020, Linz, Austria.

Recently, 2D/3D direct laser writing has attracted increased attention due to its broad applications ranging from biomedical engineering to aerospace. 3D nanolithography of water-soluble protein-based scaffolds have been envisioned to provide a variety of tunable properties. In this paper, we present a functional protein-based photoresist with tunable mechanical properties that is suitable for multiphoton lithography (MPL).

View Article and Find Full Text PDF

[Update on point-of-care-based coagulation treatment : Systems, reagents, device-specific treatment algorithms].

Anaesthesiologie

February 2024

Klinik für Anästhesiologie, Intensiv- und Notfallmedizin, Asklepios Klinik Wandsbek, Hamburg, Deutschland.

Viscoelastic test (VET) procedures suitable for point-of-care (POC) testing are in widespread clinical use. Due to the expanded range of available devices and in particular due to the development of new test approaches and methods, the authors believe that an update of the current treatment algorithms is necessary. The aim of this article is to provide an overview of the currently available VET devices and the associated reagents.

View Article and Find Full Text PDF

Dual-targeting fucoidan-based microvesicle for arterial thrombolysis and re-occlusion inhibition.

Carbohydr Polym

March 2024

State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China. Electronic address:

Arterial thrombosis is a critical thrombotic disease that poses a significant threat to human health. However, the existing clinical treatment of arterial thrombosis lacks effective targeting and precise drug release capability. In this study, we developed a system for targeted delivery and on-demand release in arterial thrombosis treatment.

View Article and Find Full Text PDF

Heart diseases are the primary cause of mortality and morbidity worldwide which inflict a heavy social and economic burden. Among heart diseases, most deaths are due to myocardial infarction (MI) or heart attack, which occurs when a decrement in blood flow to the heart causes injury to cardiac tissue. Despite several available diagnostic, therapeutic, and prognostic approaches, heart disease remains a significant concern.

View Article and Find Full Text PDF

Researchers have examined different bio-inspired materials in tissue engineering and regenerative medicine to fabricate scaffolds to address tendon regeneration requirements. We developed fibers based on alginate (Alg) and hydroxyethyl cellulose (HEC) by wet-spinning technique to mimic the fibrous sheath of ECM. Various proportions (25:75, 50:50, 75:25) of 1 % Alg and 4 % HEC were blended to this aim.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) play a key role in cell-cell communication and thus have great potential to be utilized as therapeutic agents and diagnostic tools. In this study, we implemented single-molecule microscopy techniques as a toolbox for a comprehensive characterization as well as measurement of the cellular uptake of HEK293T cell-derived EVs (eGFP-labeled) in HeLa cells. A combination of fluorescence and atomic force microscopy revealed a fraction of 68% fluorescently labeled EVs with an average size of ∼45 nm.

View Article and Find Full Text PDF

Decellularization of tissues and organs has recently become a promising approach in tissue engineering and regenerative medicine to circumvent the challenges of organ donation and complications of transplantations. However, one main obstacle to reaching this goal is acellular vasculature angiogenesis and endothelialization. Achieving an intact and functional vascular structure as a vital pathway for supplying oxygen and nutrients remains the decisive challenge in the decellularization/re-endothelialization procedure.

View Article and Find Full Text PDF

Introduction: Over the past years, different fixation techniques focused on rotational stability in order to increase stability and stimulate union rates. Additionally, extracorporeal shockwave therapy (ESWT) has gained importance in the treatment of delayed and nonunions. Purpose of this study was to compare the radiological and clinical outcome of two headless compression screws (HCS) and plate fixation in scaphoid nonunions, in combination with intraoperative high energy ESWT.

View Article and Find Full Text PDF

Tissue-engineered decellularized extracellular matrix (ECM) scaffolds hold great potential to address the donor shortage as well as immunologic rejection attributed to cells in conventional tissue/organ transplantation. Decellularization, as the key process in manufacturing ECM scaffolds, removes immunogen cell materials and significantly alleviates the immunogenicity and biocompatibility of derived scaffolds. However, the application of these bioscaffolds still confronts major immunologic challenges.

View Article and Find Full Text PDF

Bone-related diseases are major contributors to morbidity and mortality in elderly people and the current treatments result in insufficient healing and several complications. One of the promising areas of research for healing bone fractures and skeletal defects is regenerative medicine using stem cells. Differentiating stem cells using agents that shift cell development towards the preferred lineage requires activation of certain intracellular signaling pathways, many of which are known to induce osteogenesis during embryological stages.

View Article and Find Full Text PDF

Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture.

Sci Rep

October 2022

Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic.

Cardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited. We have established a scaffold-free protocol to generate multicellular, beating human cardiac microtissues in vitro from hiPSCs-namely human organotypic cardiac microtissues (hOCMTs)-that show some degree of self-organization and can be cultured for long term.

View Article and Find Full Text PDF

Autophagy is a controlled mechanism of intracellular self-digestion with functions in metabolic adaptation to stress, in development, in proteostasis and in maintaining cellular homeostasis in ageing. Deletion of autophagy in epidermal keratinocytes does not prevent the formation of a functional epidermis and the permeability barrier but causes increased susceptibility to damage stress and metabolic alterations and accelerated ageing phenotypes. We here investigated how epidermal autophagy deficiency using Keratin 14 driven Atg7 deletion would affect the lipid composition of the epidermis of young and old mice.

View Article and Find Full Text PDF

Today, there are various classifications for distal radius fractures (DRF). However, they are primarily based on plain radiographs and do not provide sufficient information on the best treatment option. There are newer classifications that simultaneously consider the pathobiomechanical basis of the fracture mechanism and analysis of computed tomography images.

View Article and Find Full Text PDF

Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats.

View Article and Find Full Text PDF

A Comparative Feasibility Study for Transcranial Extracorporeal Shock Wave Therapy.

Biomedicines

June 2022

Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria.

The potential beneficial regenerative and stimulatory extracorporeal shock wave therapy (ESWT) applications to the central nervous system have garnered interest in recent years. Treatment zones for these indications are acoustically shielded by bones, which heavily impact generated sound fields. We present the results of high-resolution tissue-realistic simulations, comparing the viability of different ESWT applicators in their use for transcranial applications.

View Article and Find Full Text PDF

Over the last two decades, yeast display methodology has served as a popular tool for discovery, humanization, stability improvement, and affinity maturation of antibodies and antibody fragments, but also for development of diverse non-antibody protein scaffolds towards the ability of antigen recognition. Yeast display is particularly well suited for multiparametric analysis of properties of derivatized proteins, allowing the evolution of most diverse protein structures into antigen binding entities with favorable expression, stability, and folding properties. Here we present the methodological basics of a novel yeast display-based approach for the functionalization of the large extracellular loop of CD81 into a de novo antigen binding unit.

View Article and Find Full Text PDF