52 results match your criteria: "AI Center for Precision Health[Affiliation]"

Evaluating segment anything model (SAM) on MRI scans of brain tumors.

Sci Rep

September 2024

Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, 15551, UAE.

Addressing the challenge of automatically segmenting anatomical structures from brain images has been a long-standing problem, attributed to subject- and image-based variations and constraints in available data annotations. The Segment Anything Model (SAM), developed by Meta, is a foundational model trained to provide zero-shot segmentation outputs with or without interactive user inputs, demonstrating notable performance on various objects and image domains without explicit prior training. This study evaluated SAM's performance in brain tumor segmentation using two publicly available Magnetic Resonance Imaging (MRI) datasets.

View Article and Find Full Text PDF
Article Synopsis
  • Early detection of sleep apnea is essential for timely intervention, and wearable AI devices offer a convenient and effective way to identify the condition compared to traditional methods like polysomnography.
  • This systematic review analyzed data from 615 studies and found that wearable AI had a pooled mean accuracy of 0.869 in detecting sleep apnea, along with high sensitivity and specificity rates.
  • The study also determined that wearable AI effectively differentiates between types of apnea and can gauge severity, showcasing its potential in improving sleep apnea diagnosis and management.
View Article and Find Full Text PDF

Emerging Industry 5.0 designs promote artificial intelligence services and data-driven applications across multiple places with varying ownership that need special data protection and privacy considerations to prevent the disclosure of private information to outsiders. Due to this, federated learning offers a method for improving machine-learning models without accessing the train data at a single manufacturing facility.

View Article and Find Full Text PDF

This study explores integrating blockchain technology into the Internet of Medical Things (IoMT) to address security and privacy challenges. Blockchain's transparency, confidentiality, and decentralization offer significant potential benefits in the healthcare domain. The research examines various blockchain components, layers, and protocols, highlighting their role in IoMT.

View Article and Find Full Text PDF

Background: In the realm of in vitro fertilization (IVF), artificial intelligence (AI) models serve as invaluable tools for clinicians, offering predictive insights into ovarian stimulation outcomes. Predicting and understanding a patient's response to ovarian stimulation can help in personalizing doses of drugs, preventing adverse outcomes (eg, hyperstimulation), and improving the likelihood of successful fertilization and pregnancy. Given the pivotal role of accurate predictions in IVF procedures, it becomes important to investigate the landscape of AI models that are being used to predict the outcomes of ovarian stimulation.

View Article and Find Full Text PDF

Background: Mobile health (mHealth) apps have the potential to enhance health care service delivery. However, concerns regarding patients' confidentiality, privacy, and security consistently affect the adoption of mHealth apps. Despite this, no review has comprehensively summarized the findings of studies on this subject matter.

View Article and Find Full Text PDF

Background: There is data paucity regarding users' awareness of privacy concerns and the resulting impact on the acceptance of mobile health (mHealth) apps, especially in the Saudi context. Such information is pertinent in addressing users' needs in the Kingdom of Saudi Arabia (KSA).

Objective: This article presents a study protocol for a mixed method study to assess the perspectives of patients and stakeholders regarding the privacy, security, and confidentiality of data collected via mHealth apps in the KSA and the factors affecting the adoption of mHealth apps.

View Article and Find Full Text PDF

Background: In this paper, we present an automated method for article classification, leveraging the power of large language models (LLMs).

Objective: The aim of this study is to evaluate the applicability of various LLMs based on textual content of scientific ophthalmology papers.

Methods: We developed a model based on natural language processing techniques, including advanced LLMs, to process and analyze the textual content of scientific papers.

View Article and Find Full Text PDF

A kidney stone is a solid formation that can lead to kidney failure, severe pain, and reduced quality of life from urinary system blockages. While medical experts can interpret kidney-ureter-bladder (KUB) X-ray images, specific images pose challenges for human detection, requiring significant analysis time. Consequently, developing a detection system becomes crucial for accurately classifying KUB X-ray images.

View Article and Find Full Text PDF

Effective modeling of patient representation from electronic health records (EHRs) is increasingly becoming a vital research topic. Yet, modeling the non-stationarity in EHR data has received less attention. Most existing studies follow a strong assumption of stationarity in patient representation from EHRs.

View Article and Find Full Text PDF

Background: Research gaps refer to unanswered questions in the existing body of knowledge, either due to a lack of studies or inconclusive results. Research gaps are essential starting points and motivation in scientific research. Traditional methods for identifying research gaps, such as literature reviews and expert opinions, can be time consuming, labor intensive, and prone to bias.

View Article and Find Full Text PDF

Background: Students usually encounter stress throughout their academic path. Ongoing stressors may lead to chronic stress, adversely affecting their physical and mental well-being. Thus, early detection and monitoring of stress among students are crucial.

View Article and Find Full Text PDF

Artificial intelligence (AI) has shown excellent diagnostic performance in detecting various complex problems related to many areas of healthcare including ophthalmology. AI diagnostic systems developed from fundus images have become state-of-the-art tools in diagnosing retinal conditions and glaucoma as well as other ocular diseases. However, designing and implementing AI models using large imaging data is challenging.

View Article and Find Full Text PDF

Background: A pooled estimate of stunting prevalence in refugee and internally displaced under-five children can help quantify the problem and focus on the nutritional needs of these marginalized groups. We aimed to assess the pooled prevalence of stunting in refugees and internally displaced under-five children from different parts of the globe.

Methods: In this systematic review and meta-analysis, seven databases (Cochrane, EBSCOHost, EMBASE, ProQuest, PubMed, Scopus, and Web of Science) along with "preprint servers" were searched systematically from the earliest available date to 14 February 2023.

View Article and Find Full Text PDF

Amidst evolving healthcare demands, nursing education plays a pivotal role in preparing future nurses for complex challenges. Traditional approaches, however, must be revised to meet modern healthcare needs. The ChatGPT, an AI-based chatbot, has garnered significant attention due to its ability to personalize learning experiences, enhance virtual clinical simulations, and foster collaborative learning in nursing education.

View Article and Find Full Text PDF

Wearable Artificial Intelligence for Detecting Anxiety: Systematic Review and Meta-Analysis.

J Med Internet Res

November 2023

AI Center for Precision Health, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar.

Background: Anxiety disorders rank among the most prevalent mental disorders worldwide. Anxiety symptoms are typically evaluated using self-assessment surveys or interview-based assessment methods conducted by clinicians, which can be subjective, time-consuming, and challenging to repeat. Therefore, there is an increasing demand for using technologies capable of providing objective and early detection of anxiety.

View Article and Find Full Text PDF

This scoping review explores the potential of artificial intelligence (AI) in enhancing the screening, diagnosis, and monitoring of disorders related to body iron levels. A systematic search was performed to identify studies that utilize machine learning in iron-related disorders. The search revealed a wide range of machine learning algorithms used by different studies.

View Article and Find Full Text PDF
Article Synopsis
  • A study investigates the relationship between circadian rhythm changes and neuropsychiatric symptoms in older adults with memory impairment.
  • Using actigraphic data, researchers found that depressive symptoms, cognitive performance, and memory recall were linked to specific times of day when activity levels were higher.
  • Results suggest that patterns of daily activity may influence mood and cognitive abilities for this demographic, highlighting the importance of time-of-day effects on mental health and memory.
View Article and Find Full Text PDF

Attention, which is the process of noticing the surrounding environment and processing information, is one of the cognitive functions that deteriorate gradually as people grow older. Games that are used for other than entertainment, such as improving attention, are often referred to as serious games. This study examined the effectiveness of serious games on attention among elderly individuals suffering from cognitive impairment.

View Article and Find Full Text PDF

Depression is a prevalent mental condition that is challenging to diagnose using conventional techniques. Using machine learning and deep learning models with motor activity data, wearable AI technology has shown promise in reliably and effectively identifying or predicting depression. In this work, we aim to examine the performance of simple linear and non-linear models in the prediction of depression levels.

View Article and Find Full Text PDF

Intermittent fasting has been practiced for centuries across many cultures globally. Recently many studies have reported intermittent fasting for its lifestyle benefits, the major shift in eating habits and patterns is associated with several changes in hormones and circadian rhythms. Whether there are accompanying changes in stress levels is not widely reported especially in school children.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent advancements in AI have enabled the prediction of BGL through data from non-invasive Wearable Devices (WDs), offering a potential improvement in diabetes management.
  • * This study explored the effectiveness of linear and non-linear models for estimating BGL using data from WDs, finding high accuracy levels and validating the use of commercial WDs in diabetes monitoring.
View Article and Find Full Text PDF

The integration of large language models (LLMs), such as those in the Generative Pre-trained Transformers (GPT) series, into medical education has the potential to transform learning experiences for students and elevate their knowledge, skills, and competence. Drawing on a wealth of professional and academic experience, we propose that LLMs hold promise for revolutionizing medical curriculum development, teaching methodologies, personalized study plans and learning materials, student assessments, and more. However, we also critically examine the challenges that such integration might pose by addressing issues of algorithmic bias, overreliance, plagiarism, misinformation, inequity, privacy, and copyright concerns in medical education.

View Article and Find Full Text PDF