150 results match your criteria: "A.A.Kharkevich Institute for Information Transmission Problems[Affiliation]"

The human gut microbiota (HGM) have an impact on host health and disease. Amino acids are building blocks of proteins and peptides, also serving as precursors of many essential metabolites including nucleotides, cofactors, etc. Many HGM community members are unable to synthesize some amino acids (auxotrophs), while other members possess complete biosynthetic pathways for these nutrients (prototrophs).

View Article and Find Full Text PDF

Disrupted development of the gut microbiota is a contributing cause of childhood malnutrition. subspecies is a prominent early colonizer of the infant gut that consumes human milk oligosaccharides (HMOs). We found that the absolute abundance of is lower in 3- to 24-month-old Bangladeshi infants with severe acute malnutrition (SAM) compared to their healthy age-matched counterparts.

View Article and Find Full Text PDF

RNA editing in the form of substituting adenine with inosine (A-to-I editing) is the most frequent type of RNA editing in many metazoan species. In most species, A-to-I editing sites tend to form clusters and editing at clustered sites depends on editing of the adjacent sites. Although functionally important in some specific cases, A-to-I editing usually is rare.

View Article and Find Full Text PDF

Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis - in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs).

View Article and Find Full Text PDF

Genome-Wide Prediction of Transcription Start Sites in Conifers.

Int J Mol Sci

February 2022

Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660074 Krasnoyarsk, Russia.

The identification of promoters is an essential step in the genome annotation process, providing a framework for gene regulatory networks and their role in transcription regulation. Despite considerable advances in the high-throughput determination of transcription start sites (TSSs) and transcription factor binding sites (TFBSs), experimental methods are still time-consuming and expensive. Instead, several computational approaches have been developed to provide fast and reliable means for predicting the location of TSSs and regulatory motifs on a genome-wide scale.

View Article and Find Full Text PDF

Background: Delta has outcompeted most preexisting variants of SARS-CoV-2, becoming the globally predominant lineage by mid-2021. Its subsequent evolution has led to emergence of multiple sublineages, many of which are well-mixed between countries.

Aim: Here, we aim to study the emergence and spread of the Delta lineage in Russia.

View Article and Find Full Text PDF

Background: Understanding the influence of genetic variants on DNA methylation is fundamental for the interpretation of epigenomic data in the context of disease. There is a need for systematic approaches not only for determining methylation quantitative trait loci (methQTL), but also for discriminating general from cell type-specific effects.

Results: Here, we present a two-step computational framework MAGAR ( https://bioconductor.

View Article and Find Full Text PDF

Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis.

View Article and Find Full Text PDF

Many genes in bacterial genomes are of unknown function, often referred to as y-genes. Recently, the analytic methods have divided bacterial transcriptomes into independently modulated sets of genes (iModulons). Functionally annotated iModulons that contain y-genes lead to testable hypotheses to elucidate y-gene function.

View Article and Find Full Text PDF

Background And Aim: Human evolution resulted from changes in our biology, behaviour, and culture. One source of these changes has been hypothesised to be our self-domestication (that is, the development in humans of features commonly found in domesticated strains of mammals, seemingly as a result of selection for reduced aggression). Signals of domestication, notably brain size reduction, have increased in recent times.

View Article and Find Full Text PDF

Changing food preferences brought about by westernization that have deleterious health effects-combined with myriad forces that are contributing to increased food insecurity-are catalysing efforts to identify more nutritious and affordable foods. Consumption of dietary fibre can help to prevent cardiovascular disease, type 2 diabetes and obesity. A substantial number of reports have explored the effects of dietary fibre on the gut microbial community.

View Article and Find Full Text PDF

The profiling of 16S rRNA revolutionized the exploration of microbiomes, allowing to describe community composition by enumerating relevant taxa and their abundances. However, taxonomic profiles alone lack interpretability in terms of bacterial metabolism, and their translation into functional characteristics of microbiomes is a challenging task. This bottom-up approach minimally requires a reference collection of major metabolic traits deduced from the complete genomes of individual organisms, an accurate method of projecting these traits from a reference collection to the analyzed amplicon sequence variants (ASVs), and, ultimately, an approach to a microbiome-wide aggregation of predicted individual traits into physiologically relevant cumulative metrics to characterize and compare multiple microbiome samples.

View Article and Find Full Text PDF

Genome-Scale Metabolic Model of Reveals Optimal Metabolic Engineering Strategies for Bio-based Chemical Production.

mSystems

June 2021

Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA.

Metabolic modeling was used to examine potential bottlenecks that could be encountered for metabolic engineering of the cellulolytic extreme thermophile Caldicellulosiruptor bescii to produce bio-based chemicals from plant biomass. The model utilizes subsystems-based genome annotation, targeted reconstruction of carbohydrate utilization pathways, and biochemical and physiological experimental validations. Specifically, carbohydrate transport and utilization pathways involving 160 genes and their corresponding functions were incorporated, representing the utilization of C5/C6 monosaccharides, disaccharides, and polysaccharides such as cellulose and xylan.

View Article and Find Full Text PDF

Extremely thermophilic bacteria from the genus can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters.

View Article and Find Full Text PDF

Technological advances have lead to the creation of large epigenetic datasets, including information about DNA binding proteins and DNA spatial structure. Hi-C experiments have revealed that chromosomes are subdivided into sets of self-interacting domains called Topologically Associating Domains (TADs). TADs are involved in the regulation of gene expression activity, but the mechanisms of their formation are not yet fully understood.

View Article and Find Full Text PDF

Sensitive and specific serology tests are essential for epidemiological and public health studies of COVID-19 and for vaccine efficacy testing. The presence of antibodies to SARS-CoV-2 surface glycoprotein (Spike) and, specifically, its receptor-binding domain (RBD) correlates with inhibition of SARS-CoV-2 binding to the cellular receptor and viral entry into the cells. Serology tests that detect antibodies targeting RBD have high potential to predict COVID-19 immunity and to accurately determine the extent of the vaccine-induced immune response.

View Article and Find Full Text PDF

Gut microbiome composition depends heavily upon diet and has strong ties to human health. Dietary carbohydrates shape the gut microbiome by providing a potent nutrient source for particular microbes. This review explores how dietary carbohydrates in general, including individual monosaccharides and complex polysaccharides, influence the gut microbiome with subsequent effects on host health and disease.

View Article and Find Full Text PDF

Historically, the health benefits and immunomodulatory potential of medicinal herbs have been considered an intrinsic quality of the herb itself. We have hypothesized that the health benefits of medicinal herbs may be partially due to their prebiotic potential that alter gut microbiota leading to changes in short chain fatty acids and vitamin production or biotransformation of herb encoded molecules and secondary metabolites. Accumulating studies emphasize the relationship between the gut microbiota and host immune function.

View Article and Find Full Text PDF
Article Synopsis
  • The gut microbiome is crucial for human health, and while its structure varies, its functional capacity is key; improved functional prediction methods can enhance understanding of its role in diseases.
  • Researchers used advanced feature engineering based on microbial phenotypes from 16S rRNA sequencing to analyze gut microbes in patients with inflammatory bowel disease (IBD) and found specific metabolic functions tied to health and disease.
  • Machine learning techniques distinguished microbiome profiles between healthy individuals and those with Crohn's disease or ulcerative colitis, offering insights into disease mechanisms and potential biomarkers for personalized medicine.
View Article and Find Full Text PDF

The ongoing pandemic of SARS-CoV-2 presents novel challenges and opportunities for the use of phylogenetics to understand and control its spread. Here, we analyze the emergence of SARS-CoV-2 in Russia in March and April 2020. Combining phylogeographic analysis with travel history data, we estimate that the sampled viral diversity has originated from at least 67 closely timed introductions into Russia, mostly in late February to early March.

View Article and Find Full Text PDF

As the interest in genetic resequencing increases, so does the need for effective mathematical, computational, and statistical approaches. One of the difficult problems in genome annotation is determination of precise positions of transcription start sites. In this paper, we present TransPrise-an efficient deep learning tool for predicting positions of eukaryotic transcription start sites.

View Article and Find Full Text PDF

Background: Protein phosphorylation is the best studied post-translational modification strongly influencing protein function. Phosphorylated amino acids not only differ in physico-chemical properties from non-phosphorylated counterparts, but also exhibit different evolutionary patterns, tending to mutate to and originate from negatively charged amino acids (NCAs). The distribution of phosphosites along protein sequences is non-uniform, as phosphosites tend to cluster, forming so-called phospho-islands.

View Article and Find Full Text PDF

Motivation: Identification of differentially expressed genes is necessary for unraveling disease pathogenesis. This task is complicated by the fact that many diseases are heterogeneous at the molecular level and samples representing distinct disease subtypes may demonstrate different patterns of dysregulation. Biclustering methods are capable of identifying genes that follow a similar expression pattern only in a subset of samples and hence can consider disease heterogeneity.

View Article and Find Full Text PDF

Background: The bulk of variability in mRNA sequence arises due to mutation-change in DNA sequence which is heritable if it occurs in the germline. However, variation in mRNA can also be achieved by post-transcriptional modification including mRNA editing, changes in mRNA nucleotide sequence that mimic the effect of mutations. Such modifications are not inherited directly; however, as the processes affecting them are encoded in the genome, they have a heritable component, and therefore can be shaped by selection.

View Article and Find Full Text PDF

B group vitamins represent essential micronutrients for myriad metabolic and regulatory processes required for human health, serving as cofactors used by hundreds of enzymes that carry out essential functions such as energy metabolism, DNA and protein synthesis and other critical functions. B vitamins and their corresponding vitamers are universally essential for all cellular life forms, from bacteria to humans. Humans are unable to synthesize most B vitamins and are therefore dependent on their diet for these essential micronutrients.

View Article and Find Full Text PDF