670 results match your criteria: "A N Bach Institute of Biochemistry[Affiliation]"

An assay was developed to detect the potato spindle tuber viroid (PSTVd), a dangerous plant pathogen that causes crop damage resulting in economic losses in the potato agriculture sector. The assay was based on the reverse transcription and recombinase polymerase amplification (RT-RPA) of PSTVd RNA coupled with amplicon detection via lateral flow assay (LFA). Primers labeled with fluorescein and biotin were designed for RT-RPA for effective recognition of the loop regions in the high-structured circular RNA of PSTVd.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect.

Mater Sci Eng C Mater Biol Appl

September 2020

Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia. Electronic address:

A critical-sized calvarial defect in rats is employed to reveal the osteoinductive properties of biomaterials. In this study, we investigate the osteogenic efficiency of hybrid scaffolds based on composites of a biodegradable and biocompatible polymer, poly(3-hydroxybutyrate) (PHB) with hydroxyapatite (HA) filled with alginate (ALG) hydrogel containing mesenchymal stem cells (MSCs) on the regeneration of the critical-sized radial defect of the parietal bone in rats. The scaffolds based on PHB and PHB/HA with desired shapes were prepared by two-stage salt leaching technique using a mold obtained by three-dimensional printing.

View Article and Find Full Text PDF

The spread of bacterial strains resistant to commonly used antibiotics urges the development of novel antibacterial compounds. Ideally, these novel antimicrobials should be less prone to the development of resistance. Peptidoglycan-degrading enzymes are a promising class of compounds with a fundamentally different mode of action compared to traditionally used antibiotics.

View Article and Find Full Text PDF

We developed an approach for substantial attenuation of Mycobacterium tuberculosis by prolonged culturing under gradually acidifying conditions. Bacteria subjected to acidification lost the capacity to form colonies on solid media, but readily resuscitated their growth in the murine host, providing a useful model to study in vivo development of infection mimicking latent and reactivation tuberculosis (TB) in humans. Here we characterize biomarkers of lung pathology and immune responses triggered by such attenuated bacteria in genetically TB-susceptible and resistant mice.

View Article and Find Full Text PDF

To counteract oxidative stress, antioxidants including carotenoids are highly promising, yet their exploitation is drastically limited by the poor bioavailability and fast photodestruction, whereas current delivery systems are far from being efficient. Here we demonstrate that the recently discovered nanometer-sized water-soluble carotenoprotein from sp. PCC 7120 (termed AnaCTDH) transiently interacts with liposomes to efficiently extract carotenoids via carotenoid-mediated homodimerization, yielding violet-purple protein samples.

View Article and Find Full Text PDF

Photoprotection in cyanobacteria is mediated by the Orange Carotenoid Protein (OCP), a two-domain photoswitch which has multiple natural homologs of its N- and C-terminal domains. Recently, it was demonstrated that C-terminal domain homologs (CTDHs) of OCP are standalone carotenoproteins participating in multidirectional carotenoid transfer between membranes and proteins. Non-covalent embedment of a ketocarotenoid causes dimerization of the small 16-kDa water-soluble CTDH protein; however, dynamic interactions of CTDH with membranes and other proteins apparently require the monomeric state.

View Article and Find Full Text PDF

Xvent-2 expression in regenerating tails.

Stem Cell Investig

July 2020

A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russia.

The tail of tadpole is an excellent model for appendage regeneration studies. We analyzed the distribution pattern of the transcription factor Xvent-2 mRNA and protein in the beginning of the regeneration of tadpole tail stumps after amputation. We revealed the emergence of Xvent-2 mRNA and protein in regeneration bud during the first day after amputation.

View Article and Find Full Text PDF

Efficient screening of ligand-receptor complex formation using fluorescence labeling and size-exclusion chromatography.

Biochem Biophys Res Commun

October 2020

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russia; Biological Faculty, Lomonosov Moscow State University, Leninskie gory, 1k12, Moscow, 119192, Russia. Electronic address:

Evidence of a complex formation is a crucial step in the structural studies of ligand-receptor interactions. Here we presented a simple and fast approach for qualitative screening of the complex formation between the chimeric extracellular domain of the nicotinic acetylcholine receptor (α7-ECD) and three-finger proteins. Complex formation of snake toxins α-Bgtx and WTX, as well as of recombinant analogs of human proteins Lynx1 and SLURP-1, with α7-ECD was confirmed using fluorescently labeled ligands and size-exclusion chromatography with simultaneous absorbance and fluorescence detection.

View Article and Find Full Text PDF

14-3-3 protein isoforms regulate multiple processes in eukaryotes, including apoptosis and cell division. 14-3-3 proteins preferentially recognize phosphorylated unstructured motifs, justifying the protein-peptide binding approach to study 14-3-3/phosphotarget complexes. Tethering of human 14-3-3σ with partner phosphopeptides via a short linker has provided structural information equivalent to the use of synthetic phosphopeptides, simultaneously facilitating purification and crystallization.

View Article and Find Full Text PDF

The photoactive Orange Carotenoid Protein (OCP) plays a key role in cyanobacterial photoprotection. In OCP, a single non-covalently bound keto-carotenoid molecule acts as a light intensity sensor, while the protein is responsible for forming molecular contacts with the light-harvesting antenna, the fluorescence of which is quenched by OCP. Activation of this physiological interaction requires signal transduction from the photoexcited carotenoid to the protein matrix.

View Article and Find Full Text PDF

Steroidogenesis in adrenals and gonads starts from cholesterol transport to mitochondria. This is mediated by the steroidogenic acute regulatory protein (STARD1), containing a mitochondrial import sequence followed by a cholesterol-binding START domain. Although mutations in this protein have been linked to lipoid congenital adrenal hyperplasia (LCAH), the mechanism of steroidogenesis regulation by STARD1 remains debatable.

View Article and Find Full Text PDF

The use of lateral flow immunoassays (LFIAs) for rapid on-site testing is restricted by their relatively high limit of detection (LoD). One possible way to decrease the LoD is to optimize nanoparticle properties that are used as labels. We compare two types of Au nanoparticles: usual quasispherical gold nanoparticles (C-GNPs), obtained by the Turkevich-Frens method, and superspherical gold nanoparticles (S-GNPs), obtained by a progressive overgrowth technique.

View Article and Find Full Text PDF

Dickeya solani, one of the most significant bacterial pathogens, infects potato plants, resulting in severe economic damage. In this study, a lateral flow assay (LFA) combined with isothermal DNA amplification was developed for rapid, specific, and sensitive diagnosis of the potato blackleg disease caused by D. solani.

View Article and Find Full Text PDF

The recombinant truncated endolysin LysK consisting of two catalytic domains, N-terminal CHAP and amidase-2 (LysK) was overexpressed in E. coli in the form of inclusion bodies (IBs). These IBs were dissolved in 6 M solution of urea followed by the refolding process.

View Article and Find Full Text PDF

Surfaces of implanted medical devices are highly susceptible to biofilm formation. Bacteria in biofilms are embedded in a self-produced extracellular matrix that inhibits the penetration of antibiotics and significantly contributes to the mechanical stability of the colonizing community which leads to an increase in morbidity and mortality rate in clinical settings. Therefore, new antibiofilm approaches and substances are urgently needed.

View Article and Find Full Text PDF

Changes in Transcriptional Regulation of Postnatal Morphogenesis of the Adrenal Zona Fasciculata Caused by Endocrine Disruptor Dichlorodiphenyltrichloroethane.

Bull Exp Biol Med

April 2020

Laboratory of Biochemistry of Nitrogen Fixation and Nitrogen Metabolism, A. N. Bach Institute of Biochemistry, Federal Research Center of Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia.

We studied the expression of transcriptional factors regulating postnatal morphogenesis of the adrenal zona fasciculata in rats after developmental exposure to endocrine disruptor DDT. It was found that tissue reparation after trophic disorders and cell death triggered by prenatal and postnatal exposure to DDT was accompanied by an increase in the number of Oct4- and Shh-expressing cells forming a pool located outside the regeneration zones and involved in the maintenance of tissue homeostasis in the zona fasciculata. DDT exposure also disrupted the expression of antiproliferative factor Hhex.

View Article and Find Full Text PDF

Dual Specificity PDZ- and 14-3-3-Binding Motifs: A Structural and Interactomics Study.

Structure

July 2020

Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France. Electronic address:

Protein-protein interaction motifs are often alterable by post-translational modifications. For example, 19% of predicted human PDZ domain-binding motifs (PBMs) have been experimentally proven to be phosphorylated, and up to 82% are theoretically phosphorylatable. Phosphorylation of PBMs may drastically rewire their interactomes, by altering their affinities for PDZ domains and 14-3-3 proteins.

View Article and Find Full Text PDF

The influence of Au@Pt nanoparticles' composition, morphology, and peroxidase-mimicking activity on the limit of detection (LOD) of lateral flow immunoassay (LFIA) has been investigated. Fourteen types of nanoparticles were synthesized by varying the concentration of Pt (20-2000 μM), using gold nanoparticles (GNP, diameter 20.0 ± 2.

View Article and Find Full Text PDF

Many major protein-protein interaction networks are maintained by 'hub' proteins with multiple binding partners, where interactions are often facilitated by intrinsically disordered protein regions that undergo post-translational modifications, such as phosphorylation. Phosphorylation can directly affect protein function and control recognition by proteins that 'read' the phosphorylation code, re-wiring the interactome. The eukaryotic 14-3-3 proteins recognizing multiple phosphoproteins nicely exemplify these concepts.

View Article and Find Full Text PDF

Unique functional properties of slow skeletal muscle tropomyosin.

Biochimie

July 2020

A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119234, Russia. Electronic address:

Tropomyosin (Tpm) is an α-helical coiled-coil actin-binding protein playing an essential role in the regulation of muscle contraction. The α- (Tpm 1.1) and γ- (Tpm 3.

View Article and Find Full Text PDF

In this work, we present a novel study on the development of an electrochemical biomimetic sensor to detect the ciprofloxacin (CIP) antibiotic. A chitosan gold nanoparticles decorated molecularly imprinted polymer (Ch-AuMIP) was used to modify the glassy carbon electrode (GCE) for preparation of the sensor. The Ch-AuMIP was characterized to understand various properties like chemical composition, morphology, roughness, and conduction using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and cyclic voltammetry (CV) respectively.

View Article and Find Full Text PDF

The use of recombinant endolysins is a promising approach for antimicrobial therapy capable of counteracting the spread of antibiotic-resistant strains. To obtain the necessary biotechnological product, diverse peptide tags are often fused to the endolysin sequence to simplify enzyme purification, improve its ability to permeabilize the bacterial outer membrane, etc. We compared the effects of two different types of protein modifications on endolysin LysECD7 bactericidal activity in vitro and demonstrated that it is significantly modulated by specific permeabilizing antimicrobial peptides, as well as by widely used histidine tags.

View Article and Find Full Text PDF

The presented study is focused on the impact of binding zone location on immunochromatographic test strips on the analytical parameters of multiplex lateral flow assays. Due to non-equilibrium conditions for such assays the duration of immune reactions influences significantly the analytical parameters, and the integration of several analytes into one multiplex strip may cause an essential decrease of sensitivity. To choose the best location for binding zones, we have tested reactants for immunochromatographic assays of lincomycin, chloramphenicol, and tetracycline.

View Article and Find Full Text PDF

One-Year Old Dormant, "Non-culturable" Preserves Significantly Diverse Protein Profile.

Front Cell Infect Microbiol

June 2021

Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia.

For adaptation to stressful conditions, () is prone to transit to a dormant, non-replicative state, which is believed to be the basis of the latent form of tuberculosis infection. Dormant bacteria persist in the host for a long period without multiplication, cannot be detected from biological samples by microbiological methods, however, their "non-culturable" state is reversible. Mechanisms supporting very long capacity of mycobacteria for resuscitation and further multiplication after prolonged survival in a dormant phase remain unclear.

View Article and Find Full Text PDF

Engineering the photoactive orange carotenoid protein with redox-controllable structural dynamics and photoprotective function.

Biochim Biophys Acta Bioenerg

June 2020

Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation. Electronic address:

Photosynthesis requires various photoprotective mechanisms for survival of organisms in high light. In cyanobacteria exposed to high light, the Orange Carotenoid Protein (OCP) is reversibly photoswitched from the orange (OCP) to the red (OCP) form, the latter binds to the antenna (phycobilisomes, PBs) and quenches its overexcitation. OCP accumulation implicates restructuring of a compact dark-adapted OCP state including detachment of the N-terminal extension (NTE) and separation of protein domains, which is reversed by interaction with the Fluorescence Recovery Protein (FRP).

View Article and Find Full Text PDF