54 results match your criteria: "6500 College Station[Affiliation]"

Diversity of neuropeptidergic modulation in decapod crustacean cardiac and feeding systems.

Curr Opin Neurobiol

December 2023

Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.

All nervous systems are multiply modulated by polypeptides. However, a bulk of transmitter and modulation research has historically focused on small molecule transmitters released at synaptic sites. The stomatogastric nervous system (controls digestive movements of the foregut) and cardiac nervous system of decapod crustaceans have long been used to understand the processes that underlie neuromodulation.

View Article and Find Full Text PDF

Long-term memory has clear advantages for animals but also has neurological and behavioral costs. Encoding memories is metabolically expensive. Older memories can interfere with retrieval of more recent memories, prolong decision-making and reduce cognitive flexibility.

View Article and Find Full Text PDF

Neuronal responses to peptide signaling are determined by the specific binding of a peptide to its receptor(s). For example, isoforms of the same peptide family can drive distinct responses in the same circuit by having different affinities for the same receptor, by having each isoform bind to a different receptor, or by a combination of these scenarios. Small changes in peptide composition can alter the binding kinetics and overall physiological response to a given peptide.

View Article and Find Full Text PDF

Background: Damage to the adult central nervous system often leads to long-term disruptions in function due to the limited capacity for neurological recovery. The central nervous system of the Mediterranean field cricket, Gryllus bimaculatus, shows an unusual capacity for compensatory plasticity, most obviously in the auditory system and the cercal escape system. In both systems, unilateral sensory disruption leads the central circuitry to compensate by forming and/or strengthening connections with the contralateral sensory organ.

View Article and Find Full Text PDF

Mass Spectrometry Quantification, Localization, and Discovery of Feeding-Related Neuropeptides in .

ACS Chem Neurosci

February 2021

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States.

The crab nervous system is an important model for understanding neural circuit dynamics and modulation, but the identity of neuromodulatory substances and their influence on circuit dynamics in this system remains incomplete, particularly with respect to behavioral state-dependent modulation. Therefore, we used a multifaceted mass spectrometry (MS) method to identify neuropeptides that differentiate the unfed and fed states. Duplex stable isotope labeling revealed that the abundance of 80 of 278 identified neuropeptides was distinct in ganglia and/or neurohemal tissue from fed vs unfed animals.

View Article and Find Full Text PDF

The origin of the parrotfish species Scarus compressus in the Tropical Eastern Pacific: region-wide hybridization between ancient species pairs.

BMC Ecol Evol

January 2021

Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, CP 23081, La Paz, Baja California Sur, México.

Background: In the Tropical Eastern Pacific (TEP), four species of parrotfishes with complex phylogeographic histories co-occur in sympatry on rocky reefs from Baja California to Ecuador: Scarus compressus, S. ghobban, S. perrico, and S.

View Article and Find Full Text PDF

Cloning of the first cDNA encoding a putative CCRFamide precursor: identification of the brain, eyestalk ganglia, and cardiac ganglion as sites of CCRFamide expression in the American lobster, Homarus americanus.

Invert Neurosci

November 2020

Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA.

Over the past decade, many new peptide families have been identified via in silico analyses of genomic and transcriptomic datasets. While various molecular and biochemical methods have confirmed the existence of some of these new groups, others remain in silico discoveries of computationally assembled sequences only. An example of the latter are the CCRFamides, named for the predicted presence of two pairs of disulfide bonded cysteine residues and an amidated arginine-phenylalanine carboxyl-terminus in family members, which have been identified from annelid, molluscan, and arthropod genomes/transcriptomes, but for which no precursor protein-encoding cDNAs have been cloned.

View Article and Find Full Text PDF

Over the past decade, in silico genome and transcriptome mining has led to the identification of many new crustacean peptide families, including the agatoxin-like peptides (ALPs), a group named for their structural similarity to agatoxin, a spider venom component. Here, analysis of publicly accessible transcriptomes was used to expand our understanding of crustacean ALPs. Specifically, transcriptome mining was used to investigate the phylogenetic/structural conservation, tissue localization, and putative functions of ALPs in decapod species.

View Article and Find Full Text PDF

Explaining how the extensive diversity in form of vertebrate teeth arose in evolution and the mechanisms by which teeth are made during embryogenesis are intertwined questions that can merit from a better understanding of the roles of retinoic acid (RA) in tooth development. Pioneering studies in rodents showed that dietary vitamin A (VA), and eventually RA (one of the major active metabolites of VA), are required for proper tooth formation and that dentin-forming odontoblast cells seem to be especially sensitive to changes in RA levels. Later, rodent studies further indicated that RA signaling interactions with other cell-signaling pathways are an important part of RA's actions in odontogenesis.

View Article and Find Full Text PDF

In decapods, dopamine, octopamine, serotonin, and histamine function as locally released/hormonally delivered modulators of physiology/behavior. Although the functional roles played by amines in decapods have been examined extensively, little is known about the identity/diversity of their amine receptors. Recently, a Homarus americanus mixed nervous system transcriptome was used to identify putative neuronal amine receptors in this species.

View Article and Find Full Text PDF

Gap junctions are physical channels that connect adjacent cells, permitting the flow of small molecules/ions between the cytoplasms of the coupled units. Innexin/innexin-like proteins are responsible for the formation of invertebrate gap junctions. Within the nervous system, gap junctions often function as electrical synapses, providing a means for coordinating activity among electrically coupled neurons.

View Article and Find Full Text PDF

Sea star inspired crawling and bouncing.

J R Soc Interface

January 2020

Department of Aerospace and Mechanical Engineering, University of Southern California, 854 Downey Way, Los Angeles, CA 90089, USA.

The oral surface of sea stars is lined with arrays of tube feet that enable them to achieve highly controlled locomotion on various terrains. The activity of the tube feet is orchestrated by a nervous system that is distributed throughout the body without a central brain. How such a distributed nervous system produces a coordinated locomotion is yet to be understood.

View Article and Find Full Text PDF

SIFamide peptides modulate cardiac activity differently in two species of Cancer crab.

Gen Comp Endocrinol

October 2019

Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.

The SIFamides are a broadly conserved arthropod peptide family characterized by the C-terminal motif -SIFamide. In decapod crustaceans, two isoforms of SIFamide are known, GYRKPPFNGSIFamide (Gly-SIFamide), which is nearly ubiquitously conserved in the order, and VYRKPPFNGSIFamide (Val-SIFamide), known only from members of the astacidean genus Homarus. While much work has focused on the identification of SIFamide isoforms in decapods, there are few direct demonstrations of physiological function for members of the peptide family in this taxon.

View Article and Find Full Text PDF

To what extent may peptide receptor gene diversity/complement contribute to functional flexibility in a simple pattern-generating neural network?

Comp Biochem Physiol Part D Genomics Proteomics

June 2019

Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA. Electronic address:

Article Synopsis
  • Peptides play a significant role in the flexibility of central pattern generators (CPGs) across animals, though the influence of their receptor diversity remains unclear.
  • Researchers examined the stomatogastric ganglion (STG) of the crab Cancer borealis, which serves as a model for studying peptidergic control.
  • A transcriptome analysis identified receptors for 27 peptide families in the crab nervous system, and experiments confirmed that receptor diversity is essential for the modulatory flexibility of CPGs, as demonstrated by the differing effects of specific peptides.
View Article and Find Full Text PDF

AMGSEFLamide, a member of a broadly conserved peptide family, modulates multiple neural networks in .

J Exp Biol

January 2019

Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822, USA.

Recent genomic/transcriptomic studies have identified a novel peptide family whose members share the carboxyl terminal sequence -GSEFLamide. However, the presence/identity of the predicted isoforms of this peptide group have yet to be confirmed biochemically, and no physiological function has yet been ascribed to any member of this peptide family. To determine the extent to which GSEFLamides are conserved within the Arthropoda, we searched publicly accessible databases for genomic/transcriptomic evidence of their presence.

View Article and Find Full Text PDF

The American lobster, Homarus americanus, is a model for investigating the neuromodulatory control of physiology and behavior. Prior studies have shown that multiple classes of chemicals serve as locally released/circulating neuromodulators/neurotransmitters in this species. Interestingly, while many neuroactive compounds are known from Homarus, little work has focused on identifying/characterizing the enzymes responsible for their biosynthesis, despite the fact that these enzymes are key components for regulating neuromodulation/neurotransmission.

View Article and Find Full Text PDF

Characterization of the mature form of a β-defensin-like peptide, Hoa-D1, in the lobster Homarus americanus.

Mol Immunol

September 2018

Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, United States. Electronic address:

We report on the characterization of the native form of an American lobster, Homarus americanus, β-defensin-like putative antimicrobial peptide, H. americanus defensin 1 (Hoa-D1), sequenced employing top-down and bottom-up peptidomic strategies using a sensitive, chip-based nanoLC-QTOF-MS/MS instrument. The sequence of Hoa-D1 was determined by mass spectrometry; it was found to contain three disulfide bonds and an amidated C-terminus.

View Article and Find Full Text PDF

Whether cardiac output in decapod crustaceans is under circadian control has long been debated, with mixed evidence for and against the hypothesis. Moreover, the locus of the clock system controlling cardiac activity, if it is under circadian control, is unknown. However, a report that the crayfish heart in organ culture maintains a circadian oscillation in heartbeat frequency suggests the presence of a peripheral pacemaker within the cardiac neuromuscular system itself.

View Article and Find Full Text PDF

Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity.

View Article and Find Full Text PDF

The crustacean stomatogastric nervous system (STNS) is a well-known model for investigating neuropeptidergic control of rhythmic behavior. Among the peptides known to modulate the STNS are the C-type allatostatins (AST-Cs). In the lobster, Homarus americanus, three AST-Cs are known.

View Article and Find Full Text PDF

Phylogenomics, the use of large-scale data matrices in phylogenetic analyses, has been viewed as the ultimate solution to the problem of resolving difficult nodes in the tree of life. However, it has become clear that analyses of these large genomic data sets can also result in conflicting estimates of phylogeny. Here, we use the early divergences in Neoaves, the largest clade of extant birds, as a "model system" to understand the basis for incongruence among phylogenomic trees.

View Article and Find Full Text PDF

In silico transcriptome mining is a powerful tool for crustacean peptidome prediction. Using homology-based BLAST searches and a simple bioinformatics workflow, large peptidomes have recently been predicted for a variety of crustaceans, including the lobster, Homarus americanus. Interestingly, no in silico studies have been conducted on the eyestalk ganglia (lamina ganglionaris, medulla externa, medulla interna and medulla terminalis) of the lobster, although the eyestalk is the location of a major neuroendocrine complex, i.

View Article and Find Full Text PDF

Central pattern generators are subject to modulation by peptides, allowing for flexibility in patterned output. Current techniques used to characterize peptides include mass spectrometry and transcriptomics. In recent years, hundreds of neuropeptides have been sequenced from crustaceans; mass spectrometry has been used to identify peptides and to determine their levels and locations, setting the stage for comparative studies investigating the physiological roles of peptides.

View Article and Find Full Text PDF

Mechanical and neurophysiological anisotropies mediate three-dimensional responses of the heart of ITALIC! Homarus americanus Although hearts ITALIC! in vivoare loaded multi-axially by pressure, studies of invertebrate cardiac function typically use uniaxial tests. To generate whole-heart length-tension curves, stretch pyramids at constant lengthening and shortening rates were imposed uniaxially and biaxially along longitudinal and transverse axes of the beating whole heart. To determine whether neuropeptides that are known to modulate cardiac activity in ITALIC! H.

View Article and Find Full Text PDF