9 results match your criteria: "550512International Isocyanate Institute[Affiliation]"

This article provides an overview of toluene diisocyanate (TDI) workplace air concentration data. Data were collected between 2005-2020 in workplaces across the United States, Canada, and the European Union by a number of different organizations, primarily using the sampling procedures published in OSHA Methods 42 and 5002. The data were then collated and organized by the International Isocyanate Institute.

View Article and Find Full Text PDF

The sensitization potencies of twenty custom-designed monomer-depleted polymeric polyisocyanate prepolymer substances and their associated toluene diisocyanate (TDI), methylene diphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI) monomer precursors were investigated by means of the mouse Local Lymph Node Assay (LLNA). These polymeric prepolymers were designed to represent the structural features and physical-chemical properties exhibited by a broad range of commercial polymeric polyisocyanate prepolymers that are produced from the reaction of aromatic and aliphatic diisocyanate monomers with aliphatic polyether and polyester polyols. The normalization of LLNA responses to the applied (15-45-135 mM) concentrations showed that the skin sensitization potency of polymeric polyisocyanate prepolymers is at least 300 times less than that of the diisocyanate monomers from which they are derived.

View Article and Find Full Text PDF

Polymeric polyisocyanate prepolymer substances are reactive intermediates used in the manufacture of various polyurethane products. Knowledge of their occupational and environmental hazard properties is essential for product stewardship and industrial hygiene purposes. This work reports on the systematic design of a program to explore how structural features (i.

View Article and Find Full Text PDF

By way of introduction to the special issue on , this brief overview presents, for the most commonly used diisocyanate monomers, a selection of physical-chemical properties that are relevant to exposure in the workplace and in the general environment, as well as a concise overview of diisocyanate reactions and some of their toxicological implications.

View Article and Find Full Text PDF

Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) are high production volume chemicals used for the manufacture of polyurethanes. For both substances, the most relevant adverse health effects after overexposure in the workplace are isocyanate-induced asthma, lung function decrement and, to a much lesser extent, skin effects. Over the last two decades many articles have addressed the reactivity of MDI and TDI in biological media and the associated biochemistry, which increased the understanding of their biochemical and physiological behavior.

View Article and Find Full Text PDF

The anonymized data of an epidemiology study on the incidence of toluene diisocyanate (TDI)-related occupational asthma in three US-based TDI production facilities have been reanalyzed to identify where to best focus exposure reduction efforts in industrial practice in order to reduce the risk of sensitization to TDI. In Part I, it was demonstrated that cumulative exposure is not a good indicator of the risk of developing TDI-related occupational asthma. In this Part II, an alternative model was developed based on net exposure parameters (i.

View Article and Find Full Text PDF

The anonymized data of an epidemiology study on incidence of toluene diisocyanate (TDI)-related occupational asthma in three US-based TDI production facilities have been reanalyzed to identify where to best focus exposure reduction efforts in industrial practice to reduce the risk of sensitization to TDI. Since the induction of sensitization has sometimes been attributed to cumulative exposure, this relationship was examined first. Gross cumulative exposure values (i.

View Article and Find Full Text PDF