8 results match your criteria: "33104 Tampere University[Affiliation]"
Waste Manag
January 2024
Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33104 Tampere University, Finland.
In recent years, extensive experimental research on hydrothermal carbonization (HTC) of sewage sludge has been performed, to study the effects of process conditions on hydrochar characteristics and nutrient, carbon, and energy recovery from sewage sludge. To promote the implementation of HTC, this study assessed HTC (230 °C, 30 min) integration into an advanced centralized biogas plant by analyzing its theoretical effects on the fates of sewage sludge solids, nitrogen, phosphorus, and carbon. The study used the mass and nutrient flows and concentrations obtained from laboratory studies, and the studied biogas plant had an original layout that employed hygienization.
View Article and Find Full Text PDFWaste Manag
June 2022
Faculty of Engineering and Natural Sciences, Tampere University, P.O.Box 541, 33104 Tampere University, Finland.
The use of pyrolysis process to valorize digestate from anaerobic digestion (AD) of municipal sewage sludge for biochar production was piloted in a central biogas plant. The pyrolysis also generates pyrolysis liquid with high organics and nutrient contents that currently has no value and requires treatment, which could potentially be done in AD. As the pyrolysis liquid may contain inhibitory compounds, we investigated the effects of adding the pyrolysis liquid on AD of sewage sludge and thermal hydrolysis pretreated sewage sludge (THSS) simulating the full-scale centralized biogas plant conditions.
View Article and Find Full Text PDFBioresour Technol
July 2022
Faculty of Engineering and Natural Sciences, Tampere University, P.O.Box 541, 33104 Tampere University, Finland.
The pulp and paper industry's mixed sludge represents waste streams with few other means of disposal than incineration. Hydrothermal carbonization (HTC) could be advantageous for the sludge refinement into value-added products, thus complementing the concept of pulp and paper mills as biorefineries. Laboratory HTC was performed on mixed sludge (at 32% and 15% total solids) at temperatures of 210-250 °C for 30 or 120 min, and the characteristics of the HTC products were evaluated for their potential for energy, carbon, and nutrient recovery.
View Article and Find Full Text PDFBioresour Technol
January 2022
School of Chemical and Biological Sciences, and Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland; Water and Environment Group, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom.
Distinct microbial assemblages evolve in anaerobic digestion (AD) reactors to drive sequential conversions of organics to methane. The spatio-temporal development of three such assemblages (granules, biofilms, planktonic) derived from the same inoculum was studied in replicated bioreactors treating long-chain fatty acids (LCFA)-rich wastewater at 20 °C at hydraulic retention times (HRTs) of 12-72 h. We found granular, biofilm and planktonic assemblages differentiated by diversity, structure, and assembly mechanisms; demonstrating a spatial compartmentalisation of the microbiomes from the initial community reservoir.
View Article and Find Full Text PDFWater Res
August 2021
Environmental and Energy Systems Engineering Program, Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey. Electronic address:
Acid mine drainage (AMD), generated in the active and abandoned mine sites, is characterized by low pH and high metal concentrations. One AMD treatment possibility is biologically oxidizing Fe followed by precipitation through pH control. As compared to autotrophic iron oxidizing microbial community, a microbial community enriched in the presence of organic nutrients was hypothesized to yield higher biomass during commissioning the bioreactor.
View Article and Find Full Text PDFWater Res
August 2021
Faculty of Engineering and Natural Sciences, Tampere University, P.O.Box 541, 33104 Tampere University, Finland.
This study aimed to assess the role of hydrothermal carbonisation (HTC) in digestate processing in centralised biogas plants receiving dewatered sludge from regional wastewater treatment plants and producing biomethane and fertilisers. Chemically conditioned and mechanically dewatered sludge was used as such (total solids (TS) 25%) or as diluted (15% TS) with reject water in 30 min or 120 min HTC treatments at 210 °C, 230 °C or 250 °C, and the produced slurry was filtered to produce hydrochars and filtrates. The different hydrochars contributed to 20-55% of the original mass, 72-88% of the TS, 74-87% of the energy content, 71-92% of the carbon, above 86% of phosphorous and 38-64% of the nitrogen present in the original digestates.
View Article and Find Full Text PDFRes Microbiol
June 2021
Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland. Electronic address:
Bioresour Technol
December 2019
Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland; National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
The microbial communities developed from a mixed-species culture in up-flow and flow-through configurations of thermophilic (55 °C) microbial fuel cells (MFCs), and their power production from acetate, were investigated. The up-flow MFC was operated for 202 days, obtaining an average power density of 0.13 W/m, and Tepidiphilus was the dominant transcriptionally-active microorganisms.
View Article and Find Full Text PDF