7 results match your criteria: "3105 Rollins Research Center[Affiliation]"
J Bacteriol
May 2008
Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd. N.E., Atlanta, GA 30322, USA.
The linear homopolymer poly-beta-1,6-N-acetyl-D-glucosamine (beta-1,6-GlcNAc; PGA) serves as an adhesin for the maintenance of biofilm structural stability in diverse eubacteria. Its function in Escherichia coli K-12 requires the gene products of the pgaABCD operon, all of which are necessary for biofilm formation. PgaC is an apparent glycosyltransferase that is required for PGA synthesis.
View Article and Find Full Text PDFJ Bacteriol
November 2006
Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Road N.E., Atlanta, GA 30322, USA.
J Bacteriol
December 2006
Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd., N.E., Atlanta, GA 30322, USA.
The pgaABCD operon of Escherichia coli is required for production of the biofilm adhesin poly-beta-1,6-N-acetyl-d-glucosamine (PGA). We establish here that NhaR, a DNA-binding protein of the LysR family of transcriptional regulators, activates transcription of this operon. Disruption of the nhaR gene decreased biofilm formation without affecting planktonic growth.
View Article and Find Full Text PDFJ Bacteriol
December 2005
Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd. N.E., Atlanta, GA 30322, USA.
Using fast Fourier transform (FFT) analysis, we previously observed that cells within Escherichia coli biofilm are organized in nonrandom or periodic spatial patterns. Here, we developed a gravity displacement assay for examining cell adherence and used it to quantitatively monitor the formation of two distinct forms of cell attachment, temporary and permanent, during early biofilm development. Temporarily attached cells were mainly surface associated by a cell pole; permanent attachments were via the lateral cell surface.
View Article and Find Full Text PDFMol Microbiol
June 2005
Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Road N.E., Atlanta, GA 30322, USA.
The RNA-binding protein CsrA represses biofilm formation, while the non-coding RNAs CsrB and CsrC activate this process by sequestering CsrA. We now provide evidence that the pgaABCD transcript, required for the synthesis of the polysaccharide adhesin PGA (poly-beta-1,6-N-acetyl-d-glucosamine) of Escherichia coli, is the key target of biofilm regulation by CsrA. csrA disruption causes an approximately threefold increase in PGA production and an approximately sevenfold increase in expression of a pgaA'-'lacZ translational fusion.
View Article and Find Full Text PDFJ Bacteriol
January 2005
Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd. N.E., Atlanta, GA 30322, USA.
Polymeric beta-1,6-N-acetyl-D-glucosamine (poly-beta-1,6-GlcNAc) has been implicated as an Escherichia coli and Staphylococcus epidermidis biofilm adhesin, the formation of which requires the pgaABCD and icaABCD loci, respectively. Enzymatic hydrolysis of poly-beta-1,6-GlcNAc, demonstrated for the first time by chromatography and mass spectrometry, disrupts biofilm formation by these species and by Yersinia pestis and Pseudomonas fluorescens, which possess pgaABCD homologues.
View Article and Find Full Text PDFJ Bacteriol
May 2004
Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
Production of a polysaccharide matrix is a hallmark of bacterial biofilms, but the composition of matrix polysaccharides and their functions are not widely understood. Previous studies of the regulation of Escherichia coli biofilm formation suggested the involvement of an unknown adhesin. We now establish that the pgaABCD (formerly ycdSRQP) locus affects biofilm development by promoting abiotic surface binding and intercellular adhesion.
View Article and Find Full Text PDF