18 results match your criteria: "303A College Road East[Affiliation]"

HTS screening identified compound 2a (piperazinone derivative) as a low micromolar HCV genotype 1 (GT-1) inhibitor. Resistance mapping studies suggested that this piperazinone chemotype targets the HCV nonstructural protein NS4B. Extensive SAR studies were performed around 2a and the amide function and the C-3/C-6 cis stereochemistry of the piperazinone core were essential for HCV activity.

View Article and Find Full Text PDF

Conformationally restricted 2'-spironucleosides and their prodrugs were synthesized as potential anti-HCV agents. Although the replicon activity of the new agents containing pyrimidine bases was modest, the triphosphate of a 2'-oxetane cytidine analogue demonstrated potent intrinsic biochemical activity against the NS5B polymerase, with IC50 = 8.48 μM.

View Article and Find Full Text PDF

The 3',5'-cyclic phosphate prodrug 9-[β-d-2'-deoxy-2'-α-fluoro-2'-β-C-methylribofuranosyl]-2-amino-6-ethoxypurine, PSI-352938 1, has demonstrated promising anti-HCV efficacy in vitro and in human clinical trials. A structure-activity relationship study of the nucleoside 3',5'-cyclic phosphate series of β-d-2'-deoxy-2'-α-fluoro-2'-β-C-methylribofuranosyl nucleoside prodrugs was undertaken and the anti-HCV activity and in vitro safety profile were assessed. Cycloalkyl 3',5'-cyclic phosphate prodrugs were shown to be significantly more potent as inhibitors of HCV replication than branched and straight chain alkyl 3',5'-cyclic phosphate prodrugs.

View Article and Find Full Text PDF

Rationale: Nucleotide phosphoramidates are prodrugs which effectively deliver the active nucleotide to target tissues. It was shown that the individual phosphoramidate diastereomers have different antiviral activity, although the active nucleotide is the same. Therefore, a fast and simple analytical method is needed to characterize the individual diastereomeric phosphoramidate prodrugs.

View Article and Find Full Text PDF

In order to support bioanalytical LC/MS method development and plasma sample analysis in preclinical and clinical studies of the anti-hepatitis C-virus nucleotides, PSI-7977 and PSI-352938, the corresponding stable isotope labeled forms were prepared. These labeled compounds were prepared by addition reaction of the freshly prepared Grignard reagent (13)CD(3)MgI to the corresponding 2 '-ketone nucleosides followed by fluorination of the resulting carbinol with DAST. As expected, these 2 '-C-(trideuterated-(13)C-methyl) nucleotide prodrugs showed similar anti-HCV activity to that of the corresponding unlabeled ones.

View Article and Find Full Text PDF

PSI-352938, a cyclic phosphate nucleotide, and PSI-353661, a phosphoramidate nucleotide, are prodrugs of β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methylguanosine-5'-monophosphate. Both compounds are metabolized to the same active 5'-triphosphate, PSI-352666, which serves as an alternative substrate inhibitor of the NS5B RNA-dependent RNA polymerase during HCV replication. PSI-352938 and PSI-353661 retained full activity against replicons containing the S282T substitution, which confers resistance to certain 2'-substituted nucleoside/nucleotide analogs.

View Article and Find Full Text PDF

Prodrugs of therapeutic nucleoside monophosphates masked as phosphoramidate derivatives have become an increasingly important class of antiviral drugs in pharmaceutical research for delivering nucleotides in vitro and in vivo. Conventionally, phosphoramidate derivatives are prepared as a mixture of two diastereomers. We report a class of stable phosphoramidating reagents containing an amino acid ester and two phenolic groups, one unsubstituted and the other with electron-withdrawing substituents.

View Article and Find Full Text PDF

A rapid and stereospecific method using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the separation and determination of PSI-7851 diastereomers in human K₂EDTA plasma has been developed. The analytical method involves direct protein precipitation with acetonitrile, followed by separation of the diastereomers on a Luna C₁₈ column, positive mode electrospray ionization and selected reaction monitoring mode mass spectrometry detection. The mobile phase composition and pH were investigated for the resolution of the two diastereomers of PSI-7851.

View Article and Find Full Text PDF

Human N(6)-methyl-AMP/dAMP aminohydrolase has been shown to be involved in metabolism of pharmacologically important N(6)-substituted purine nucleosides and 5'-monophosphate prodrugs thereof. This enzyme was cloned and expressed in E. coli, and mass spectroscopic analysis followed by amino acid sequence analyses indicated that the protein was adenosine deaminase-like protein isoform 1 (ADAL1).

View Article and Find Full Text PDF

PSI-352938 is a novel 2'-deoxy-2'-α-fluoro-2'-β-C-methyl 3',5'-cyclic phosphate nucleotide prodrug currently under investigation for the treatment of hepatitis C virus (HCV) infection. PSI-352938 demonstrated superior characteristics in vitro that include broad genotype coverage, superior resistance profile, and high levels of active triphosphate in vivo in the liver compared to our first and second generation nucleoside inhibitors of this class. Consequently, PSI-352938 was selected for further development and an efficient and scalable synthesis was sought to support clinical development.

View Article and Find Full Text PDF

PSI-352938 is a novel cyclic phosphate prodrug of β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methylguanosine 5'-monophosphate that has potent activity against hepatitis C virus (HCV) in vitro. The studies described here characterize the in vitro anti-HCV activity of PSI-352938, alone and in combination with other inhibitors of HCV, and the cross-resistance profile of PSI-352938. The effective concentration required to achieve 50% inhibition for PSI-352938, determined using genotype 1a-, 1b-, and 2a-derived replicons stably expressed in the Lunet cell line, were 0.

View Article and Find Full Text PDF

Hepatitis C virus afflicts approximately 180 million people worldwide, and the development of direct acting antivirals may offer substantial benefit compared to the current standard of care. Accordingly, prodrugs of 2'-deoxy-2'-fluoro-2'-C-methylguanosine monophosphate analogues were prepared and evaluated for their anti-HCV efficacy and tolerability. These prodrugs demonstrated >1000 fold greater potency than the parent nucleoside in a cell-based replicon assay as a result of higher intracellular triphosphate levels.

View Article and Find Full Text PDF

A series of novel 2'-deoxy-2'-α-fluoro-2'-β-C-methyl 3',5'-cyclic phosphate nucleotide prodrug analogs were synthesized and evaluated for their in vitro anti-HCV activity and safety. These prodrugs demonstrated a 10-100-fold greater potency than the parent nucleoside in a cell-based replicon assay due to higher cellular triphosphate levels. Our structure-activity relationship (SAR) studies provided compounds that gave high levels of active triphosphate in rat liver when administered orally to rats.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a global health problem requiring novel approaches for effective treatment of this disease. The HCV NS5B polymerase has been demonstrated to be a viable target for the development of HCV therapies. β-d-2'-Deoxy-2'-α-fluoro-2'-β-C-methyl nucleosides are selective inhibitors of the HCV NS5B polymerase and have demonstrated potent activity in the clinic.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) NS5B RNA polymerase facilitates the RNA synthesis step during the HCV replication cycle. Nucleoside analogs targeting the NS5B provide an attractive approach to treating HCV infections because of their high barrier to resistance and pan-genotype activity. PSI-7851, a pronucleotide of beta-D-2'-deoxy-2'-fluoro-2'-C-methyluridine-5'-monophosphate, is a highly active nucleotide analog inhibitor of HCV for which a phase 1b multiple ascending dose study of genotype 1-infected individuals was recently completed (M.

View Article and Find Full Text PDF

Beta-D-2'-deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) is a potent specific inhibitor of hepatitis C virus (HCV) RNA synthesis in Huh-7 replicon cells. To inhibit the HCV NS5B RNA polymerase, PSI-6130 must be phosphorylated to the 5'-triphosphate form. The phosphorylation of PSI-6130 and inhibition of HCV NS5B were investigated.

View Article and Find Full Text PDF

Recent studies of human populations suggest that the genome consists of chromosome segments that are ancestrally conserved ('haplotype blocks'; refs. 1-3) and have discrete boundaries defined by recombination hot spots. Using publicly available genetic markers, we have constructed a first-generation haplotype map of chromosome 19.

View Article and Find Full Text PDF