7 results match your criteria: "1Aix Marseille University[Affiliation]"
Acta Microbiol Immunol Hung
June 2023
1Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France.
Cardiovascular involvement has been described in acute and recovered COVID-19 patients. Here, we present a case of symptomatic pericarditis with persistent symptoms for at least six months after the acute infection and report 66 published cases of pericarditis in discharged COVID patients. Patient mean age ± SD was 49.
View Article and Find Full Text PDFActa Microbiol Immunol Hung
January 2021
1Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France.
We aimed to assess the prevalence of pathogenic bacteria and resistance genes in rectal samples collected among homeless persons in Marseille, France. In February 2014 we enrolled 114 sheltered homeless adults who completed questionnaires and had rectal samples collected. Eight types of enteric bacteria and 15 antibiotic resistance genes (ARGs) were sought by real-time polymerase chain reaction (qPCR) performed directly on rectal samples.
View Article and Find Full Text PDFMed Sci Sports Exerc
August 2016
1Aix-Marseille University, CNRS, Center for Magnetic Resonance in Biology and Medicine (CRMBM) UMR 7339, Marseille, FRANCE; 2INSERM, Cognition, Action, and Sensorimotor Plasticity (CAPS) UMR 1093, University of Burgundy, Faculty of Sport Sciences, Dijon, FRANCE; 3APHM, La Timone Hospital, Imaging Center, CEMEREM, Marseille, FRANCE; and 4Deparment of Rheumatology, Sainte Marguerite Hospital, Marseille, FRANCE.
Purpose: This study aimed at investigating the mechanisms involved in the force reduction induced by two electrical stimulation (ES) protocols that were designed to activate motor units differently.
Methods: The triceps surae of 11 healthy subjects (8 men; age, ~28 yr) was activated using ES applied over the tibial nerve. Two ES protocols (conventional [CONV]: 20 Hz, 0.
Med Sci Sports Exerc
May 2016
1Aix-Marseille University, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Unite Mixte de Recherche 7339, Marseille, FRANCE; 2Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT; 3Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT; 4Department of Anesthesiology, Pharmacology and Intensive Care and Department of Fundamental Neurosciences, University of Geneva, SWITZERLAND; 5Motricity Efficiency and Deficiency, EA 2991, Faculty of Sport Science, Unite de Formation et de Recherche en Sciences et Techniques des Activites Physiques et Sportives, Montpellier, FRANCE; 6INSERM ADR 08, Montpellier, FRANCE.
Introduction: Endurance training elicits tremendous adaptations of the mitochondrial energetic capacity. Yet, the effects of training or physical fitness on mitochondrial efficiency during exercise are still unclear. Accordingly, the purpose of the present study was to examine in vivo the differences in mitochondrial efficiency and ATP cost of contraction during exercise in two groups of adults differing in their aerobic capacity.
View Article and Find Full Text PDFMed Sci Sports Exerc
June 2015
1Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Unité Mixte de Recherche 7339, Marseille, FRANCE; 2Assistance Publique des Hôpitaux de Marseille (APHM), Sainte Marguerite Hospital, Department of Rheumatology, Marseille, FRANCE; and 3APHM, La Timone Hospital, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Imaging Center, Marseille, FRANCE.
Purpose: Although it has been largely acknowledged that isometric neuromuscular electrostimulation (NMES) exercise induces larger muscle damage than voluntary contractions, the corresponding effects on muscle energetics remain to be determined. Voluntary exercise-induced muscle damage (EIMD) has been reported to have minor slight effects on muscle metabolic response to subsequent dynamic exercise, but the magnitude of muscle energetics alterations for NMES EIMD has never been documented.
Methods: ³¹P magnetic resonance spectroscopy measurements were performed in 13 young healthy males during a standardized rest-exercise-recovery protocol before (D0) and 2 d (D2) and 4 d (D4) after NMES EIMD on knee extensor muscles.
Med Sci Sports Exerc
January 2015
1Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Unité Mixte de Recherche 7339, Marseille, FRANCE; 2Assistance Publique des Hôpitaux de Marseille (APHM), La Timone Hospital, Imaging Center, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, FRANCE; and 3APHM, Sainte Marguerite Hospital, Department of Rheumatology, Marseille, FRANCE.
Purpose: Neuromuscular electrostimulation (NMES) leads to a spatially fixed, synchronous, and superficial motor unit recruitment, which could induce muscle damage. Therefore, the extent of muscle damage and its spatial occurrence were expected to be heterogeneous across and along the quadriceps femoris (QF) muscles. The aim of the present study was to characterize muscle spatial heterogeneity in QF damage after a single bout of isometric NMES using multimodal magnetic resonance imaging (MRI).
View Article and Find Full Text PDF