104 results match your criteria: "1306 E University Blvd[Affiliation]"

Human sulfite oxidase (hSO), an essential molybdoheme enzyme, catalyzes the oxidation of toxic sulfite to sulfate. The proposed catalytic cycle includes two, one-electron intramolecular electron transfers (IET) between the molybdenum (Mo) and the heme domains. Rapid IET rates are ascribed to conformational changes that bring the two domains into close proximity to one another.

View Article and Find Full Text PDF

Approaches to the rational design of selective melanocortin receptor antagonists.

Expert Opin Drug Discov

May 2011

University of Arizona, Department of Chemistry and Biochemistry , 1306 E. University Blvd., Tucson, AZ 85721 , USA

Introduction: When establishing the physiological roles of specific receptors in normal and disease states, it is critical to have selective antagonist ligands for each receptor in a receptor system with several subtypes. The melanocortin receptors have five subtypes referred to as the melanocortin 1 receptor, melanocortin 2 receptor, melanocortin 3 receptor, melanocortin 4 receptor and melanocortin 5 receptor, and they are of critical importance for many aspects of human health and disease.

Areas Covered: This article reviews the current efforts to design selective antagonistic ligands for the five human melanocortin receptors summarizing the currently published orthosteric and allosteric antagonists for each of these receptors.

View Article and Find Full Text PDF

Resonance and localization effects at a dipolar organic semiconductor interface.

J Chem Phys

September 2011

Department of Chemistry, The University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, USA.

The image state manifold of the dipolar organic semiconductor vanadyl naphthalocyanine (VONc) on highly oriented pyrolytic graphite is investigated by angle-resolved two-photon photoemission (AR-TPPE) spectroscopy in the 0-1 monolayer regimes. Interfacial charge-transfer from the image potential state of clean graphite populates a near-resonant VONc anion level, identifiable by the graphite image potential state by its distinct momentum dispersion obtained from AR-TPPE. This affinity level is subject to depolarization by the neighboring molecules, resulting in stabilization of this state with coverage.

View Article and Find Full Text PDF

Cell-specific targeting by heterobivalent ligands.

Bioconjug Chem

July 2011

Department of Chemistry & Biochemistry, 1306 E. University Blvd., The University of Arizona, Tucson, Arizona 85721, United States.

Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8).

View Article and Find Full Text PDF

Magnetic self-assembly of gold nanoparticle chains using dipolar core-shell colloids.

Chem Commun (Camb)

January 2011

Department of Chemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA.

The preparation of gold nanoparticle (AuNP) assemblies was conducted by the synthesis and dipolar assembly of ferromagnetic core-shell nanoparticles composed of AuNP cores and cobalt NP shells. Dissolution of metallic Co phases with mineral acids afforded self-assembled AuNP chains and bracelets.

View Article and Find Full Text PDF

Sulfite oxidase (SO) is a molybdenum-cofactor-dependent enzyme that catalyzes the oxidation of sulfite to sulfate, the final step in the catabolism of the sulfur-containing amino acids, cysteine and methionine. The catalytic mechanism of vertebrate SO involves intramolecular electron transfer (IET) from molybdenum to the integral b-type heme of SO and then to exogenous cytochrome c. However, the crystal structure of chicken sulfite oxidase (CSO) has shown that there is a 32 Å distance between the Fe and Mo atoms of the respective heme and molybdenum domains, which are connected by a flexible polypeptide tether.

View Article and Find Full Text PDF

Image states at the interface with a dipolar organic semiconductor.

J Chem Phys

September 2010

Department of Chemistry, The University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, USA.

Image states of the dipolar organic semiconductor vanadyl naphthalocyanine on highly oriented pyrolytic graphite are investigated in the submonolayer to few monolayer regime. The presence of a significant molecular dipole in the organized thin films leads to a strong modification of the image states with coverage. In the 0-1 ML regime, we observe successive stabilization of the image state with increasing coverage.

View Article and Find Full Text PDF

Influence of electrostatic fields on molecular electronic structure: insights for interfacial charge transfer.

Phys Chem Chem Phys

October 2010

Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA.

Molecular and interfacial electronic structure at organic semiconductor interfaces shows a rich and subtle dependence on short- and long-range electrostatic interactions. Interface dipoles can be controlled making use of the anisotropic charge distribution at the interface, often with direct consequences also for the molecular electronic structure. In this Perspective, we will discuss the emerging understanding of how local and collective electrostatic effects control energy level alignment and molecular electronic structure at organic semiconductor interfaces and highlight some of the ramifications for interfacial charge-transfer dynamics.

View Article and Find Full Text PDF

A novel hybrid melanocortin pharmacophore was designed based on the pharmacophores of the agouti-signaling protein (ASIP), an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. The designed hybrid ASIP/MSH pharmacophore was explored in monomeric cyclic, and cyclodimeric templates. The monomeric cyclic disulfide series yielded peptides with hMC3R-selective non-competitive binding affinities.

View Article and Find Full Text PDF

Enantioselective organocatalytic alpha-sulfenylation of substituted diketopiperazines.

Tetrahedron Asymmetry

December 2009

Department of Chemistry and Biochemistry, The University of Arizona, 1306 E University Blvd, Tucson, AZ 85721, USA.

The asymmetric organocatalytic alpha-sulfenylation of substituted piperazine-2,5-diones is reported, with cinchona alkaloids as chiral Lewis bases and electrophilic sulfur transfer reagents. Catalyst loadings, the type of sulfur transfer reagent, temperature and solvent were investigated in order to optimize the reaction conditions. The effects of ring substitution and the type of catalyst on the yield and enantioselectivity of the reaction are reported.

View Article and Find Full Text PDF

We have constructed an ultrahigh vacuum confocal fluorescence microscope with the purpose of performing single molecule spectroscopy under highly defined conditions. The microscope is designed for high stability while affording the capability of sample preparation, sample transfer, and optical detection in ultrahigh vacuum. It achieves near-diffraction-limited performance and allows the observation of single molecule fluorescence dynamics over extended periods of time.

View Article and Find Full Text PDF

Single molecule power-law behavior on a crystalline surface.

J Chem Phys

September 2009

Department of Chemistry, The University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, USA.

Single perylene bisimide molecules deposited onto Al(2)O(3) (0001) and investigated under controlled ultrahigh vacuum conditions display fluorescence intermittency behavior characteristic of an interfacial charge transfer process. Remarkably, even though the molecules are deposited on a crystalline surface with reduced disorder, power-law-distributed bright and dark periods are observed. These data can be understood based on activated formation of localized small polaron states in Al(2)O(3) (0001).

View Article and Find Full Text PDF

Heteromultivalency provides a route to increase binding avidity and to high specificity when compared to monovalent ligands. The enhanced specificity can potentially serve as a unique platform to develop diagnostics and therapeutics. To develop new imaging agents based upon multivalency, we employed heterobivalent constructs of optimized ligands.

View Article and Find Full Text PDF

In recent years mass spectrometry based techniques have emerged as structural biology tools for the characterization of macromolecular, noncovalent assemblies. Many of these efforts involve preservation of intact protein complexes within the mass spectrometer, providing molecular weight measurements that allow the determination of subunit stoichiometry and real-time monitoring of protein interactions. Attempts have been made to further elucidate subunit architecture through the dissociation of subunits from the intact complex by colliding it into inert gas atoms such as argon or xenon.

View Article and Find Full Text PDF

SOEs (sulfite-oxidizing enzymes) are physiologically vital and occur in all forms of life. During the catalytic cycle, the five-co-ordinate square pyramidal oxo-molybdenum active site passes through the Mo(V) state, and intimate details of the structure can be obtained from variable frequency pulsed EPR spectroscopy through the hyperfine and nuclear quadrupole interactions of nearby magnetic nuclei. By employing variable spectrometer operational frequencies, it is possible to optimize the measurement conditions for difficult quadrupolar nuclei of interest (e.

View Article and Find Full Text PDF

Fragmentation of doubly-protonated peptide ion populations labeled by H/D exchange with CD(3)OD.

Int J Mass Spectrom

January 2006

University of Arizona, Department of Chemistry, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA.

Doubly-protonated bradykinin (RPPGFSPFR) and an angiotensin III analogue (RVYIFPF) were subjected to hydrogen/deuterium (H/D) exchange with CD(3)OD in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. A bimodal distribution of deuterium incorporation was present for bradykinin after H/D exchange for 90 s at a CD(3)OD pressure of 4 x 10(-7) Torr, indicating the existence of at least two distinct populations. Bradykinin ion populations corresponding to 0-2 and 5-11 deuteriums (i.

View Article and Find Full Text PDF

Total internal reflection fluorescence (TIRF) microscopy is a powerful means of probing biological cells because it reduces autofluorescence, but the need for direct contact between the cell surface and the microscope slide hinders chemical access to the cell surface. In this work, a submicrometer crystalline layer of colloidal silica on the microscope coverslip is shown to allow TIRF microscopy while also allowing chemical access to the cell surface. A 750 nm layer of 165 nm silica colloidal crystals was sintered onto a fused silica coverslip, and Chinese hamster ovary cells were successfully grown on this surface.

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) investigation of the Mo(V) center of the pathogenic R160Q mutant of human sulfite oxidase (hSO) confirms the presence of three distinct species whose relative abundances depend upon pH. Species 1 is exclusively present at pH < or = 6, and remains in significant amounts even at pH 8. Variable-frequency electron spin echo envelope modulation (ESEEM) studies of this species prepared with (33)S-labeled sulfite clearly show the presence of coordinated sulfate, as has previously been found for the "blocked" form of Arabidopsis thaliana at low pH (Astashkin, A.

View Article and Find Full Text PDF

Molecules that target beta-amyloid.

ChemMedChem

December 2007

Department of Chemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA.

The devastating effects of Alzheimer's and related amyloidogenic diseases have inspired the synthesis and evaluation of numerous ligands to understand the molecular mechanism of the aggregation of the beta-amyloid peptide. Our review focuses on the current knowledge in this field with respect to molecules that have been demonstrated to interact with either oligomeric or fibrillar forms of the beta-amyloid peptide. We describe natural proteins, peptides, peptidomimetics, and small molecules that have been found to interfere with beta-amyloid aggregation.

View Article and Find Full Text PDF

Density functional theory calculations have been employed to study the interaction between the Zn2+ ion and some standard amino acid models. The highest affinities towards the Zn2+ ion are predicted for serine, cysteine, and histidine. Relatively high affinities are reported also for proline and glutamate/aspartate residues.

View Article and Find Full Text PDF

Sulfite oxidizing enzymes (SOEs) are physiologically vital and occur in all forms of life. During the catalytic cycle the five-coordinate square-pyramidal oxo-molybdenum active site passes through the Mo(v) state, and intimate details of the structure can be obtained from pulsed EPR spectroscopy through the hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of nearby magnetic nuclei (e.g.

View Article and Find Full Text PDF