23,130 results match your criteria: "100871 China ; National Institute of Biological Sciences[Affiliation]"

Characterization of the Micro-Morphology and Compositional Distribution of Chang'e-5 Lunar Soil Mineral Surfaces Using TOF-SIMS.

Adv Sci (Weinh)

January 2025

Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.

The lunar soil samples returned by China's Chang'e-5 (CE-5) contain valuable information on geological evolutions on the Moon. Herein, by employing high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), five rock chip samples from the CE-5 lunar soil are characterized in-depth, which reveal micro-morphological and compositional features. From the elemental/molecular ion distribution images, minerals such as pyroxene, ilmenite, feldspar, K-rich glass, silica, and silicate minerals are identified, along with their occurrence states and distribution results.

View Article and Find Full Text PDF

Origins and conservation of topological polarization defects in resonant photonic-crystal diffraction.

Nanophotonics

January 2025

Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.

We present a continuative definition of topological charge to depict the polarization defects on any resonant diffraction orders in photonic crystal slab regardless they are radiative or evanescent. By using such a generalized definition, we investigate the origins and conservation of polarization defects across the whole Brillouin zone. We found that the mode crossings due to Brillouin zone folding contribute to the emergence of polarization defects in the entire Brillouin zone.

View Article and Find Full Text PDF

Multi-dimensional bio mass cytometry: simultaneous analysis of cytoplasmic proteins and metabolites on single cells.

Chem Sci

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

Single-cell multi-dimensional analysis enables more profound biological insight, providing a comprehensive understanding of cell physiological processes. Due to limited cellular contents, the lack of protein and metabolite amplification ability, and the complex cytoplasmic environment, the simultaneous analysis of intracellular proteins and metabolites remains challenging. Herein, we proposed a multi-dimensional bio mass cytometry platform characterized by protein signal conversion and amplification through an orthogonal exogenous enzymatic reaction.

View Article and Find Full Text PDF

Influences of fluctuating nutrient loadings on nitrate-reducing microorganisms in rivers.

ISME Commun

January 2025

Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.

Rivers serve important functions for human society and are significantly impacted by anthropogenic nutrient inputs (e.g. organic and sulfur compounds).

View Article and Find Full Text PDF

Indoor Environment and Health Effects: Protocol of an Exploratory Panel Study among Young Adults in China (China IEHE Study).

Environ Health (Wash)

January 2025

Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.

Indoor environment and health have drawn public attention worldwide. However, the joint health effects and mechanisms of exposure to different types of indoor environmental factors remain unclear. We established an exploratory panel study on indoor environment and health effects among young adults in China (the China IEHE Study) to comprehensively investigate 3M issues, including multiple indoor environmental factors, multiple health effects, and multiple omics methods for mechanism exploration.

View Article and Find Full Text PDF

Multiphase Radical Chemical Processes Induced by Air Pollutants and the Associated Health Effects.

Environ Health (Wash)

January 2025

College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

Air pollution is increasingly recognized as a significant health risk, yet our understanding of its underlying chemical and physiological mechanisms remains incomplete. Fine particulate matter (PM) and ozone (O) interact with biomolecules in intracellular and microenvironments, such as the epithelial lining fluid (ELF), leading to the generation of reactive oxygen species (ROS). These ROS trigger cellular inflammatory responses and oxidative stress, contributing to a spectrum of diseases affecting the respiratory, cardiovascular, and central nervous systems.

View Article and Find Full Text PDF

Climate-Driven Escalation of Global PM Health Burden from Wildland Fires.

Environ Sci Technol

January 2025

College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.

Wildland fires constitute a major source of ambient fine particulate matter (PM), significantly impacting air quality and public health. As the climate becomes warmer and drier, fire frequency is projected to rise, yet how the associated health impacts of fire-sourced PM (FPM) respond to climate change remains vague. In this study, we modeled the global concentration and associated premature deaths of FPM over the past two decades.

View Article and Find Full Text PDF

Impact of TP53 alteration on allogeneic hematopoietic cell transplantation outcomes for myelodysplastic syndromes.

Bone Marrow Transplant

January 2025

Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China.

The poor outcome of TP53 alteration has been reported in myelodysplastic syndrome (MDS) patients. However, the role of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in TP53 alteration patients remains debated. Previous studies showed that TP53 mutations had no effect on the prognosis of patients with acute leukemia after haploidentical HSCT (haplo-HSCT).

View Article and Find Full Text PDF

Precipitation is an important factor influencing the date of foliar senescence, which in turn affects carbon uptake of terrestrial ecosystems. However, the temporal patterns of precipitation frequency and its impact on foliar senescence date remain largely unknown. Using both long-term carbon flux data and satellite observations across the Northern Hemisphere, we show that, after excluding impacts from of temperature, radiation and total precipitation by partial correlation analysis, declining precipitation frequency may drive earlier foliar senescence date from 1982 to 2022.

View Article and Find Full Text PDF

Since the building blocks of DNA are nonfluorescent, various external fluorescence reporters have been employed to investigate the structure, dynamics, and function of DNA G-quadruplexes (GQs) and i-motifs (iMs), which play an important role in gene regulation and expression. However, most of those fluorescence reporters lack the ability to provide site-specific structural information of interest. Therefore, it is necessary to develop fluorescent nucleoside analogues that can be covalently inserted into oligonucleotides, which not only serve this purpose, but minimize any potential perturbation towards the native structure of the DNA systems in question.

View Article and Find Full Text PDF

Development of a Genetically Encoded Sensor for Arginine.

ACS Sens

January 2025

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

The amino acid l-arginine (Arg) plays important roles in multiple metabolic and physiological processes, and changes in its concentration have been implicated in pathological processes. While it is important to measure Arg levels in biological systems directly and in real-time, existing Arg sensors respond to l-ornithine or l-lysine. Here we report ArgS1, a new Arg sensor.

View Article and Find Full Text PDF

CAR-NK cell therapy: a potential antiviral platform.

Sci Bull (Beijing)

January 2025

Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China. Electronic address:

Viral infections persist as a significant cause of morbidity and mortality worldwide. Conventional therapeutic approaches often fall short in fully eliminating viral infections, primarily due to the emergence of drug resistance. Natural killer (NK) cells, one of the important members of the innate immune system, possess potent immunosurveillance and cytotoxic functions, thereby playing a crucial role in the host's defense against viral infections.

View Article and Find Full Text PDF

Global, regional, and national burden of major depressive disorders in adults aged 60 years and older from 1990 to 2021, with projections of prevalence to 2050: Analyses from the Global Burden of Disease Study 2021.

J Affect Disord

January 2025

Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38, Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, No.38, Xueyuan Road, Haidian District, Beijing 100191, China; Institute for Global Health and Development, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China; Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, No.38, Xueyuan Road, Haidian District, Beijing 100191, China. Electronic address:

Aims: To estimate the burden of major depressive disorder (MDD) among older adults and project its prevalence through 2050.

Methods: Using data from the Global Burden of Disease Study 2021, we calculated age-standardized rates (ASRs) for the incidence, prevalence, and years lived with disability (YLDs) of MDD among people aged ≥60 years from 1990 to 2021. Trends were analyzed using average annual percentage changes (AAPCs).

View Article and Find Full Text PDF

Postprandial parasympathetic signals promote lung type 2 immunity.

Neuron

January 2025

PTN Graduate Program, Peking University Third Hospital Cancer Center, Center for Life Sciences, IDG/McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Peking Union Medical College Hospital, Beijing 100730, China. Electronic address:

Lung type 2 immunity protects against pathogenic infection, but its dysregulation causes asthma. Although it has long been observed that symptoms of asthmatic patients often become exaggerated following food intake, the pathophysiological mechanism underlying this postprandial phenomenon is incompletely understood. Here, we report that lung type 2 immunity in mice is enhanced after feeding, which correlates with parasympathetic activation.

View Article and Find Full Text PDF

Impact of aerosol-photolysis interaction on the ozone concentration in the upper boundary layer on Mountain Everest.

Sci Total Environ

January 2025

SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Science, Peking University, Beijing 100871, China.

Previous research has revealed that, during the late afternoon, the ozone (O3) concentration tends to elevate at the northern perimeter of Mount Everest (5200 m above sea level). This increase is attributed to the natural gradient of rising O3 concentration with height, exacerbated by the corresponding downstream mountain winds. Our recent field observations corroborate this finding, showing a consistent increase in O3 concentrations by approximately 13.

View Article and Find Full Text PDF

Organic-inorganic hybrid perovskites have demonstrated great potential for flexible optoelectronic devices due to their superior optoelectronic properties and structural flexibility. However, mechanical deformation-induced cracks at the buried interface and delamination from the substrate severely constrain the optoelectronic performance and device lifespan. Here, we design a two-site bonding strategy aiming to reinforce the mechanical stability of the SnO2/perovskite interface and perovskite layer using a multifunctional organic salt, 4-(trifluoromethoxy)phenylhydrazine hydrochloride (TPH).

View Article and Find Full Text PDF

Stripe charge order and its interaction with Majorana bound states in 2M-WS topological superconductors.

Natl Sci Rev

February 2025

State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.

To achieve logic operations via Majorana braiding, positional control of the Majorana bound states (MBSs) must be established. Here we report the observation of a striped surface charge order coexisting with superconductivity and its interaction with the MBS in the topological superconductor 2M-WS, using low-temperature scanning tunneling microscopy. By applying an out-of-plane magnetic field, we observe that MBSs are absent in vortices in the region with stripe order.

View Article and Find Full Text PDF

Sustainable management of riverine NO emission baselines.

Natl Sci Rev

February 2025

Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.

The riverine NO fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF is poorly constrained, which impedes the NO estimation and mitigation. Our meta-analysis discovered a universal NO emission baseline (EF = k/[NO ], k = 0.

View Article and Find Full Text PDF

Scalable, Flexible, and UV-Resistant Bacterial Cellulose Composite Film for Daytime Radiative Cooling.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices & Interface Science, Nanjing University of Information Science & Technology, Ning-Liu Road 219, Nanjing 210026, China.

Radiative cooling, a passive cooling technology, functions by reflecting the majority of solar radiation (within the solar spectrum of 0.3-2.5 μm) and emitting thermal radiation (within the atmospheric windows of 8-13 μm and 16-20 μm).

View Article and Find Full Text PDF

Perceived biodiversity of public greenspace and mental well-being.

Environ Res

January 2025

College of Urban and Environmental Sciences, Peking University, 5 Yiheyuan Road, Beijing, 100871, China. Electronic address:

View Article and Find Full Text PDF

Modification at ITO/NiO Interface with MoS Enables Hole Transport for Efficient and Stable Inverted Perovskite Solar Cells.

ChemSusChem

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China.

Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO and inefficient hole transport. In this study, we introduced MoS nanoparticles at the indium tin oxide (ITO) /NiO interface to enhance the ITO surface and optimize the deposition of NiO, resulting in increased conductivity linked to a ratio of Ni:Ni.

View Article and Find Full Text PDF

The evolution of chemical ordering and property in Fe Se upon intercalation ratios.

Natl Sci Rev

February 2025

School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China.

Intercalation has been considered as an effective method to explore innovative two-dimensional (2D) materials and modify their properties. However, the relationship between intercalation concentration, structure, and property remains a largely uncharted territory, and the controllable synthesis of desired intercalated phases faces challenges. Here, a general intercalated rule for the effect of self-intercalation ratio on atomic arrangements is revealed.

View Article and Find Full Text PDF

High-Performance Edge-Contact Monolayer Molybdenum Disulfide Transistors.

Research (Wash D C)

January 2025

School of Integrated Circuits and Beijing Advanced Innovation Center for Integrated Circuits, Peking University, Beijing 100871, China.

Edge contact is essential for achieving the ultimate device pitch scaling of stacked nanosheet transistors with monolayer 2-dimensional (2D) channels. However, due to large edge-contact resistance between 2D channels and contact metal, there is currently a lack of high-performance edge-contact device technology for 2D material channels. Here, we report high-performance edge-contact monolayer molybdenum disulfide (MoS) field-effect transistors (FETs) utilizing well-controlled plasma etching techniques.

View Article and Find Full Text PDF

We report enhanced proton conductivity promoted by a structural phase transition of MFM-504(Cu)-DMF to MFM-504(Cu)-MeOH and to MFM-504(Cu)-OH via ligand substitution upon exposure to MeOH and HO vapors, respectively. MFM-504(Cu)-DMF can be synthesized by the solvothermal reaction of Cu(NO)·3HO and the flexible zwitterionic ligand, imidazolium-1,3-bis(methylenedicarboxylate) (imidc), to afford a unique layered interwoven network structure. MFM-504(Cu)-OH shows a proton conductivity of 5.

View Article and Find Full Text PDF