9 results match your criteria: "1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry[Affiliation]"

Significance: Hydrogen peroxide (HO) is a key signaling molecule involved in the regulation of both physiological and pathological cellular processes. Genetically encoded HyPer probes are currently among the most effective approaches for monitoring HO dynamics in various biological systems because they can be easily targeted to specific cells and organelles. Since its development in 2006, HyPer has proved to be a robust and powerful tool in redox biology research.

View Article and Find Full Text PDF

Innate immunity natural Abs (NAbs) execute a number of functions, including protection and surveillance. Despite active research, the stimuli that induce the formation of NAbs are still described only hypothetically. Here, we compared repertoires of anti-glycan Abs in the peripheral blood of mice that received per os various bacteria.

View Article and Find Full Text PDF

MiXCR: software for comprehensive adaptive immunity profiling.

Nat Methods

May 2015

1] Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia. [2] Pirogov Russian National Research Medical University, Moscow, Russia. [3] Central European Institute of Technology, Masaryk University, Brno, Czech Republic.

View Article and Find Full Text PDF

Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide.

Nat Commun

October 2014

1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia [2] NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia.

Reactive oxygen species (ROS) are conserved regulators of numerous cellular functions, and overproduction of ROS is a hallmark of various pathological processes. Genetically encoded fluorescent probes are unique tools to study ROS production in living systems of different scale and complexity. However, the currently available recombinant redox sensors have green emission, which overlaps with the spectra of many other probes.

View Article and Find Full Text PDF

Biocomputing based on particle disassembly.

Nat Nanotechnol

September 2014

Prokhorov General Physics Institute, Russian Academy of Sciences, Natural Science Centre, 38 Vavilov St, Moscow 119991, Russia.

Nanoparticles with biocomputing capabilities could potentially be used to create sophisticated robotic devices with a variety of biomedical applications, including intelligent sensors and theranostic agents. DNA/RNA-based computing techniques have already been developed that can offer a complete set of Boolean logic functions and have been used, for example, to analyse cells and deliver molecular payloads. However, the computing potential of particle-based systems remains relatively unexplored.

View Article and Find Full Text PDF

The t(8;21)(q22;q22) rearrangement represents the most common chromosomal translocation in acute myeloid leukemia (AML). It results in a transcript encoding for the fusion protein AML1-ETO (AE) with transcription factor activity. AE is considered to be an attractive target for treating t(8;21) leukemia.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on using a genetically engineered immunotoxin, 4D5scFv-miniSOG, to selectively target and kill HER2-positive breast cancer cells.
  • The 4D5scFv miniSOG utilizes a single-chain variable fragment of an antibody to bind to the HER2 receptor, allowing for specific recognition and internalization by cancer cells.
  • The research shows that this targeted approach effectively induces cell death and enhances the effects of existing chemotherapy drugs like Taxol.
View Article and Find Full Text PDF

Previous studies have shown that Agr genes, which encode thioredoxin domain-containing secreted proteins, play a critical role in limb regeneration in salamanders. To determine the evolutionary conservation of Agr function, it is important to examine whether Agrs play a similar role in species with a different type of regeneration. Here, we refined the phylogeny of Agrs, revealing three subfamilies: Ag1, Agr2 and Agr3.

View Article and Find Full Text PDF