3 results match your criteria: "1 The Scripps Research Institute Molecular Screening Center[Affiliation]"

Traditional high-throughput drug screening in oncology routinely relies on two-dimensional (2D) cell models, which inadequately recapitulate the physiologic context of cancer. Three-dimensional (3D) cell models are thought to better mimic the complexity of in vivo tumors. Numerous methods to culture 3D organoids have been described, but most are nonhomogeneous and expensive, and hence impractical for high-throughput screening (HTS) purposes.

View Article and Find Full Text PDF

Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic human pathogen that is prevalent in hospitals and continues to develop resistance to multiple classes of antibiotics. Historically, β-lactam antibiotics have been the first line of therapeutic defense. However, the emergence of multidrug-resistant (MDR) strains of P.

View Article and Find Full Text PDF