11 results match your criteria: "1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology[Affiliation]"
Activation of peroxisome proliferator-activated receptor (PPAR)-β/δ reduces tissue injury in murine endotoxemia. We hypothesized that the PPAR-β/δ-agonist GW0742 improves long-term outcome after sepsis caused by cecal ligation and puncture (CLP). Fifty-one CD-1 female mice underwent CLP and received either vehicle (control), GW0742 (0.
View Article and Find Full Text PDFCell Transplant
January 2018
1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.
Over a century ago, clinicians started to use the human amniotic membrane for coverage of wounds and burn injuries. To date, literally thousands of different clinical applications exist for this biomaterial almost exclusively in a decellularized or denuded form. Recent reconsiderations for the use of vital human amniotic membrane for clinical applications would take advantage of the versatile cells of embryonic origin including the entirety of their cell organelles.
View Article and Find Full Text PDFTissue Eng Part C Methods
May 2017
2 Austrian Cluster for Tissue Regeneration , Vienna, Austria .
Pepsin-solubilized atelocollagen can be used to form highly complex three-dimensional matrices for a broad spectrum of tissue engineering applications. Moreover, it has a long history as a favorable biomaterial in pharmaceutical and medical industries. So far, the main sources for these approaches are collagens from xenogenic sources.
View Article and Find Full Text PDFTissue Eng Part C Methods
December 2016
1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria .
Natural extracellular matrix-derived biomaterials from decellularized allogenic tissues are of increasing interest for tissue engineering because their structure and composition provide a complexity that is not achievable with current manufacturing techniques. The prerequisite to bring allogenic tissue from bench to bedside as a functional biomaterial is the full removal of cells while preserving most of its native characteristics such as structure and composition. The exceptionally dense structure of articular cartilage, however, poses a special challenge for decellularization, scaffold preparation, and reseeding.
View Article and Find Full Text PDFTissue Eng Part B Rev
October 2016
1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria .
The lymphatic system is involved in maintaining interstitial fluid homeostasis, fat absorption, and immune surveillance. Dysfunction of lymphatic fluid uptake can lead to lymphedema. Worldwide up to 250 million people are estimated to suffer from this disfiguring and disabling disease, which places a strain on the healthcare system as well as on the affected patients.
View Article and Find Full Text PDFTissue Eng Part C Methods
May 2016
1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria .
Chondrogenic differentiation of adipose-derived stem cells (ASC) is challenging but highly promising for cartilage repair. Large donor variability of chondrogenic differentiation potential raises the risk for transplantation of cells with reduced efficacy and a low chondrogenic potential. Therefore, quick potency assays are required to control the potency of the isolated cells before cell transplantation.
View Article and Find Full Text PDFTissue Eng Part A
November 2015
1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria .
Aims: Increasing evidences suggest that, apart from activation of guanylyl cyclase, intracellular nitric oxide (NO) signaling is associated with an interaction between NO and reactive oxygen species (ROS) to modulate physiological or pathophysiological processes. The aim of this study was to understand the contribution of mitochondrial ROS (mtROS) to NO-mediated signaling in hepatocytes on inflammation.
Results: In rats treated with lipopolysaccharide (LPS), mitochondria-targeted antioxidants (mtAOX) (mitoTEMPO and SkQ1) reduced inducible nitric oxide synthase (iNOS) gene expression in liver, NO levels in blood and plasma, and markers of organ damage (lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase).
Tissue Eng Part A
January 2015
1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , AUVA Research Centre, Austrian Cluster for Tissue Regeneration, Vienna, Austria .
Tissue engineering (TE) strategies aim at imitating the natural process of regeneration by using bioresorbable scaffolds that support cellular attachment, migration, proliferation, and differentiation. Based on the idea of combining a fully degradable polymer [poly(ɛ-caprolactone)] with a thermoresponsive polymer (polyethylene glycol methacrylate), a scaffold was developed, which liquefies below 20°C and solidifies at 37°C. In this study, this scaffold was evaluated for its ability to support C2C12 cells and human adipose-derived stem cells (ASCs) to generate an expandable three-dimensional (3D) construct for soft or bone TE.
View Article and Find Full Text PDFSci Rep
May 2014
Department of Biotechnology, Indian Institute of Technology, Kharagpur-721302, India.
Silkworm's silk is natural biopolymer with unique properties including mechanical robustness, all aqueous base processing and ease in fabrication into different multifunctional templates. Additionally, the nonmulberry silks have cell adhesion promoting tri-peptide (RGD) sequences, which make it an immensely potential platform for regenerative medicine. The compatibility of nonmulberry silk with human blood is still elusive; thereby, restricts its further application as implants.
View Article and Find Full Text PDFHum Gene Ther Methods
February 2014
1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG), Vienna-Branch, 1200 Vienna, Austria .
An ideal novel treatment for bone defects should provide regeneration without autologous or allogenous grafting, exogenous cells, growth factors, or biomaterials while ensuring spatial and temporal control as well as safety. Therefore, a novel osteoinductive nonviral in vivo gene therapy approach using sonoporation was investigated in ectopic and orthotopic models. Constitutive or regulated, doxycycline-inducible, bone morphogenetic protein 2 and 7 coexpression plasmids were repeatedly applied for 5 days.
View Article and Find Full Text PDF