29 results match your criteria: "1 Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB)[Affiliation]"

The FERONIA-RESPONSIVE TO DESICCATION 26 module regulates vascular immunity to Ralstonia solanacearum.

Plant Cell

December 2024

State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.

Some pathogens colonize plant leaves, but others invade the roots, including the vasculature, causing severe disease symptoms. Plant innate immunity has been extensively studied in leaf pathosystems; however, the precise regulation of immunity against vascular pathogens remains largely unexplored. We previously demonstrated that loss of function of the receptor kinase FERONIA (FER) increases plant resistance to the typical vascular bacterial pathogen Ralstonia solanacearum.

View Article and Find Full Text PDF
Article Synopsis
  • Ethylene response factor StPti5 in potatoes is identified as a susceptibility factor that negatively impacts immunity against pathogens like potato virus Y and Ralstonia solanacearum, which operate through different mechanisms.
  • The study reveals that StPti5 is broken down in healthy plants through autophagy but accumulates in the nucleus during infection, indicating its role in the plant's defense response.
  • It also shows that StPti5 is regulated by the interaction of ethylene and salicylic acid pathways, influencing other ERFs and downregulating the ubiquitin-proteasome pathway, contributing to understanding plant immunity regulation.
View Article and Find Full Text PDF

Background: Structural genomic variants (SVs) are prevalent in plant genomes and have played an important role in evolution and domestication, as they constitute a significant source of genomic and phenotypic variability. Nevertheless, most methods in quantitative genetics focusing on crop improvement, such as genomic prediction, consider only Single Nucleotide Polymorphisms (SNPs). Deep Learning (DL) is a promising strategy for genomic prediction, but its performance using SVs and SNPs as genetic markers remains unknown.

View Article and Find Full Text PDF

Background: Gut microbial composition plays an important role in numerous traits, including immune response. Integration of host genomic information with microbiome data is a natural step in the prediction of complex traits, although methods to optimize this are still largely unexplored. In this paper, we assess the impact of different modelling strategies on the predictive capacity for six porcine immunocompetence traits when both genotype and microbiota data are available.

View Article and Find Full Text PDF

Drought is a major environmental stress that limits growth and productivity in agricultural ecosystems limiting crop yield worldwide. Breeding crops for enhanced drought tolerance is a priority to preserve food security on the increasing world population. Recent work in Arabidopsis has shown that vascular brassinosteroid receptor BRL3 (Brassinosteroid insensitive like-3) transcriptionally controls the production of osmoprotectant metabolites that confer drought resistance without penalizing growth, offering new and exciting possibilities for biotechnological improvement of drought-resistant crops.

View Article and Find Full Text PDF

Pineapple ( (L.) Merr.) is the second most important tropical fruit crop globally, and 'MD2' is the most important cultivated variety.

View Article and Find Full Text PDF

In the last few years, next-generation sequencing techniques have started to be used to identify new viruses infecting plants. This has allowed to rapidly increase our knowledge on viruses other than those causing symptoms in economically important crops. Here we used this approach to identify a virus infecting Physcomitrium patens that has the typical structure of the double-stranded RNA endogenous viruses of the Amalgaviridae family, which we named Physcomitrium patens amalgavirus 1, or PHPAV1.

View Article and Find Full Text PDF

Potato bacterial wilt is caused by the devastating bacterial pathogen Ralstonia solanacearum. Quantitative resistance to this disease has been and is currently introgressed from a number of wild relatives into cultivated varieties through laborious breeding programs. Here, we present two methods that we have developed to facilitate the screening for resistance to bacterial wilt in potato.

View Article and Find Full Text PDF

Transposable elements (TEs) are a rich source of genetic variability. Among TEs, miniature inverted-repeat TEs (MITEs) are of particular interest as they are present in high copy numbers in plant genomes and are closely associated with genes. MITEs are deletion derivatives of class II transposons, and can be mobilized by the transposases encoded by the latter through a typical cut-and-paste mechanism.

View Article and Find Full Text PDF

Background: Ralstonia solanacearum is the causal agent of bacterial wilt, a devastating plant disease responsible for serious economic losses especially on potato, tomato, and other solanaceous plant species in temperate countries. In R. solanacearum, gene expression analysis has been key to unravel many virulence determinants as well as their regulatory networks.

View Article and Find Full Text PDF

QTLs and candidate genes analyses for fruit size under domestication and differentiation in melon (Cucumis melo L.) based on high resolution maps.

BMC Plant Biol

March 2021

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.

Background: Melon is a very important horticultural crop produced worldwide with high phenotypic diversity. Fruit size is among the most important domestication and differentiation traits in melon. The molecular mechanisms of fruit size in melon are largely unknown.

View Article and Find Full Text PDF

Ralstonia solanacearum causes bacterial wilt disease in many plant species. Type III-secreted effectors (T3Es) play crucial roles in bacterial pathogenesis. However, some T3Es are recognized by corresponding disease resistance proteins and activate plant immunity.

View Article and Find Full Text PDF

A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits.

Nat Genet

November 2019

Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa.

View Article and Find Full Text PDF

The growth hormone receptor (GHR), the growth hormone releasing hormone receptor (GHRHR), and the insulin-like growth factor 1 (IGF1) genes are known to modulate growth, reproduction, and lactation traits in livestock. The aim of the current work was to investigate if the variation of the sheep GHR, GHRHR, and IGF1 genes is associated with milk yield and quality traits. Three hundred eighty dairy Sarda sheep were genotyped for 36 single nucleotide polymorphisms (SNP) mapping to these 3 loci, and records for milk yield and daily fat and protein yield, as well as for fat, protein, casein, lactose, and milk urea contents, pH, somatic cell score, logarithmic bacterial count, and milk energy were obtained.

View Article and Find Full Text PDF

The identification of chemical compounds that prevent and combat bacterial diseases is fundamental for crop production. Bacterial virulence inhibitors are a promising alternative to classical control treatments, because they have a low environmental impact and are less likely to generate bacterial resistance. The major virulence determinant of most animal and plant bacterial pathogens is the type III secretion system (T3SS).

View Article and Find Full Text PDF

Unlabelled: The study of the boar sperm transcriptome by RNA-seq can provide relevant information on sperm quality and fertility and might contribute to animal breeding strategies. However, the analysis of the spermatozoa RNA is challenging as these cells harbor very low amounts of highly fragmented RNA, and the ejaculates also contain other cell types with larger amounts of non-fragmented RNA. Here, we describe a strategy for a successful boar sperm purification, RNA extraction and RNA-seq library preparation.

View Article and Find Full Text PDF

Sugar content is the major determinant of both fruit quality and consumer acceptance in melon ( L), and is a primary target for crop improvement. Near-isogenic lines (NILs) derived from the intraspecific cross between a "Piel de Sapo" (PS) type and the exotic cultivar "Songwhan Charmi" (SC), and several populations generated from the cross of PS × Ames 24294 ("Trigonus"), a wild melon, were used to identify QTL related to sugar and organic acid composition. Seventy-eight QTL were detected across several locations and different years, with three important clusters related to sugar content located on chromosomes 4, 5, and 7.

View Article and Find Full Text PDF

The causal agent of bacterial wilt, Ralstonia solanacearum, is a soilborne pathogen that invades plants through their roots, traversing many tissue layers until it reaches the xylem, where it multiplies and causes plant collapse. The effects of R. solanacearum infection are devastating, and no effective approach to fight the disease is so far available.

View Article and Find Full Text PDF

Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits.

Theor Appl Genet

September 2017

Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n., 46022, Valencia, Spain.

Loci on LGIV, VI, and VIII of melon genome are involved in the control of fruit domestication-related traits and they are candidate to have played a role in the domestication of the crop. The fruit of wild melons is very small (20-50 g) without edible pulp, contrasting with the large size and high pulp content of cultivated melon fruits. An analysis of quantitative trait loci (QTL) controlling fruit morphology domestication-related traits was carried out using an in vitro maintained F population from the cross between the Indian wild melon "Trigonus" and the western elite cultivar 'Piel de Sapo'.

View Article and Find Full Text PDF

The hypersensitive response (HR) is a localized programmed cell death phenomenon that occurs in response to pathogen recognition at the site of attempted invasion. Despite more than a century of research on HR, little is known about how it is so tightly regulated and how it can be contained spatially to a few cells. AtMC1 is an Arabidopsis thaliana plant metacaspase that positively regulates the HR.

View Article and Find Full Text PDF

Grapevine (Vitis vinifera L.) is a species well known for its adaptation to radiation. However, photomorphogenic factors related to UV-B responses have not been molecularly characterized.

View Article and Find Full Text PDF