2 results match your criteria: "1] Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM)[Affiliation]"

Article Synopsis
  • * The study highlights that mutant KRAS increases glutamine consumption in cancer cells, which is crucial for their growth and proliferation, and identifies SLC7A5 as a key player in maintaining amino acid levels needed for this process.
  • * Targeting protein synthesis pathways, particularly by inhibiting mTORC1 and deleting SLC7A5, shows promise in slowing down the growth of Kras-mutant tumors, suggesting SLC7A5 could be a valuable therapeutic target for difficult-to-treat CRC cases.
View Article and Find Full Text PDF

Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells.

Nature

April 2015

1] Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany [2] Deutsches Krebsforschungszentrum (DKFZ), Division of Stem Cells and Cancer, Experimental Hematology Group, 69120 Heidelberg, Germany.

Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia.

View Article and Find Full Text PDF