4,979 results match your criteria: "⊥CNR-Nano Institute of Nanoscience[Affiliation]"
Nat Rev Chem
January 2025
CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France.
As the use of two-dimensional materials continues to grow, so too does the need to understand the environmental and biological impact of such materials. Degradation is a critical step in the life cycle of any material, but the majority of such knowledge is obtained from test tube and in vitro studies. Therefore, there remains a gap in understanding the degradability of two-dimensional materials in complex systems (in vivo) and in different ambient environments.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Superconductivity in infinite-layer nickelates has stirred much research interest, to which questions regarding the nature of superconductivity remain elusive. A critical leap forward to address these intricate questions is through the growth of high-crystallinity infinite-layer nickelates, including the "parent" phase. Here, we report the synthesis of a high-quality thin-film nickelate, NdNiO.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.
Flexible perovskite solar cells (FPSCs) are a promising emerging photovoltaic technology, with certified power conversion efficiencies reaching 24.9 %. However, the frequent occurrence of grain fractures and interface delamination raises concerns about their ability to endure the mechanical stresses caused by temperature fluctuations.
View Article and Find Full Text PDFAdv Mater
January 2025
Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain.
Twisting 2D van der Waals magnets allows the formation and control of different spin-textures, as skyrmions or magnetic domains. Beyond the rotation angle, different spin reversal processes can be engineered by increasing the number of magnetic layers forming the twisted van der Waals heterostructure. Here, pristine monolayers and bilayers of the A-type antiferromagnet CrSBr are considered as building blocks.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, No. 189 Songling Road, 266101, Qingdao, CHINA.
Due to high binding energy and extremely short diffusion distance of Frenkel excitons in common organic semiconductors at early stage, mechanism of interface charge transfer-mediated free carrier generation has dominated the development of bulk heterojunction (BHJ) organic solar cells (OSCs). However, considering the advancements in materials and device performance, it is necessary to reexamine the photoelectric conversion in current-stage efficient OSCs. Here, we propose that the conjugated materials with specific three-dimensional donor-acceptor conjugated packing potentially exhibit distinctive charge photogeneration mechanism, which spontaneously split Wannier-Mott excitons to free carriers in pure phases.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, 09042 Cagliari, Italy.
: Horseradish ( L.) roots-largely used in traditional medicine for their multiple therapeutic effects-are a rich source of health-promoting phytochemicals. However, their efficacy can be compromised by low chemical stability and poor bioavailability.
View Article and Find Full Text PDFLight Sci Appl
January 2025
State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.
Colloidal quantum dots (CQDs) are attractive gain media due to their wavelength-tunability and low optical gain threshold. Consequently, CQD lasers, especially the surface-emitting ones, are promising candidates for display, sensing and communication. However, it remains challenging to achieve a low-threshold surface-emitting CQD laser array with high stability and integration density.
View Article and Find Full Text PDFNano Lett
January 2025
Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China.
Achieving high mobility while minimizing off-current and static power consumption is critical for applications of two-dimensional field-effect transistors. Herein, a selenium (Se) sacrificial layer is introduced between the rhenium sulfide (ReS) semiconductor and source/drain electrode. With the Se layer and postannealing process, the ReS transistor significantly decreases the off-state current with a substantial increase in the on-state current density.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan 475004, China.
ACS Nano
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Perovskite nanocrystals (PNCs) are promising active materials because of their outstanding optoelectronic properties, which are finely tunable via size and shape. However, previous synthetic methods such as hot-injection and ligand-assisted reprecipitation require a high synthesis temperature or provide limited access to homogeneous PNCs, leading to the present lack of commercial value and real-world applications of PNCs. Here, we report a room-temperature approach to synthesize PNCs within a liquid crystalline antisolvent, enabling access to PNCs with a precisely defined size and shape and with reduced surface defects.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Korea.
Addressing and mitigating decoherence sources plays an essential role in the development of a scalable quantum computing system, which requires low gate errors to be consistently maintained throughout the circuit execution. While nuclear spin-free materials, such as isotopically purified silicon, exhibit intrinsically promising coherence properties for electron spin qubits, the omnipresent charge noise, when converted to magnetic noise under a strong magnetic field gradient, often hinders stable qubit operation within a time frame comparable to the data acquisition time. Here, we demonstrate both open- and closed-loop suppression techniques for the transduced noise in silicon spin qubits, resulting in a more than two-fold (ten-fold) improvement of the inhomogeneous coherence time (Rabi oscillation quality) that leads to a single-qubit gate fidelity of over 99.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain. Electronic address:
Ocular inflammation is a complex pathology with limited treatment options. While traditional therapies have side effects, novel approaches, such as natural compounds like Apigenin (APG) and Melatonin (MEL) offer promising solutions. APG and MEL, in combination with nanostructured lipid carriers (NLC), may provide a synergistic effect in treating ocular inflammation, potentially improving patient outcomes and reducing adverse effects.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Group of Bionanotechnology and Molecular Cell Biology, Nanomedicine department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt. Electronic address:
Paclitaxel (PTX) binds to spindle microtubules and inhibits mitotic division leading to cell death. However, its wide distribution, high absorption, and less selectively, minimize its application in cancer clinics. In this study, isolated arabinoxylans were used to encapsulate PTX, and then both were covered by polyethylene glycol conjugated to folic acid (FA), to strengthen its specificity to cancerous cells.
View Article and Find Full Text PDFFEBS Lett
December 2024
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
Exogenous fatty acids are directly incorporated into bacterial membranes, heavily influencing cell envelope properties, antibiotic susceptibility, and bacterial ecology. Here, we quantify fatty acid biosynthesis metabolites and enzymes of the fatty acid synthesis pathway to determine how exogenous fatty acids inhibit fatty acid synthesis in Escherichia coli. We find that acyl-CoA synthesized from exogenous fatty acids rapidly increases concentrations of long-chain acyl-acyl carrier protein (acyl-ACP), which inhibits fatty acid synthesis initiation.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Electronic Engineering, Laboratory of Micro/Nano-Optoelectronics, Xiamen University, Xiamen, Fujian 361005, China; Institute of Nanoscience and Applications (INA), Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
Managing undesirable biofilms is a persistent challenge in water treatment and distribution systems. Although ultraviolet-light emitting diode (UV-LED) irradiation, an emerging disinfection method with the chemical-free and emission-adjustable merits, has been widely reported effective to inactivate planktonic bacteria, few studies have examined its effects on biofilms. This study aims to fill this gap by exploring the performance and mechanism of UV-LEDs on the prefabricated Escherichia coli (E.
View Article and Find Full Text PDFNat Aging
December 2024
Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
The emerging field of senolytics is centered on eliminating senescent cells to block their contribution to the progression of age-related diseases, including cancer, and to facilitate healthy aging. Enhancing the selectivity of senolytic treatments toward senescent cells stands to reduce the adverse effects associated with existing senolytic interventions. Taking advantage of lipofuscin accumulation in senescent cells, we describe here the development of a highly efficient senolytic platform consisting of a lipofuscin-binding domain scaffold, which can be conjugated with a senolytic drug via an ester bond.
View Article and Find Full Text PDFJ Tissue Viability
December 2024
Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt; Nile Valley University, Fayoum, 63518 Egypt. Electronic address:
Despite the advances in the development of therapeutic wearable wound-healing patches, lack self-healing properties and strong adhesion to diabetic skin, hindering their effectiveness. We propose a unique, wearable patch made from a 3D organo-hydrogel nanocomposite containing polydopamine, titanium dioxide nanoparticles, and silver quantum dots (PDA-TiO@Ag). The designed patch exhibits ultra-stretchable, exceptional-self-healing, self-adhesive, ensuring conformal contact with the skin even during movement.
View Article and Find Full Text PDFiScience
December 2024
Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands.
Epithelial-to-mesenchymal transitions (EMT) and unjamming transitions provide two distinct pathways for cancer cells to become invasive, but it is still unclear to what extent these pathways are connected. Here, we addressed this question by performing 3D spheroid invasion assays on epithelial-like (A549) and mesenchymal-like (MV3) cancer cell lines in collagen-based hydrogels, where we varied both the invasive character of the cells and matrix porosity. We found that the onset time of invasion was correlated with the matrix porosity and vimentin levels, while the spheroid expansion rate correlated with MMP1 levels.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
EPJ Quantum Technol
December 2024
Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona (UB), C. Martí i Franquès, 1, 08028 Barcelona, Spain.
The growth of quantum technologies is attracting the interest of many students eager to learn concepts such as quantum entanglement or quantum superposition. However, the non-intuitive nature of these concepts poses a challenge to understanding them. Here, we present an entangled photon system which can perform a Bell test, i.
View Article and Find Full Text PDFFront Neurosci
December 2024
Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
Neuronal activity in the highly organized networks of the central nervous system is the vital basis for various functional processes, such as perception, motor control, and cognition. Understanding interneuronal connectivity and how activity is regulated in the neuronal circuits is crucial for interpreting how the brain works. Multi-electrode arrays (MEAs) are particularly useful for studying the dynamics of neuronal network activity and their development as they allow for real-time, high-throughput measurements of neural activity.
View Article and Find Full Text PDFACS Energy Lett
December 2024
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona 08193, Spain.
Batteries based on sulfur cathodes offer a promising energy storage solution due to their potential for high performance, cost-effectiveness, and sustainability. However, commercial viability is challenged by issues such as polysulfide migration, volume changes, uneven phase nucleation, limited ion transport, and sluggish sulfur redox kinetics. Addressing these challenges requires insights into the structural, morphological, and chemical evolution of phases, the associated volume changes and internal stresses, and ion and polysulfide diffusion within the battery.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.
Near-infrared second region (NIR-II) fluorescence imaging provides enhanced tissue penetration, achieving efficient NIR-II fluorescence and photoacoustic imaging (PA)-guided photothermal therapy (PTT) all in one material remains a challenging yet promising approach in cancer treatment. Herein, open-shell V═O metalloradical complex (VONc) is self-assembled into VONc nanospheres (VONc NPs). VONc NPs exhibit light absorption from 300 to 1400 nm, fluorescence spectra ranging from 900 to 1400 nm, and a distinct fluorescence signal even at 1550 nm.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Institute of Materials Chemistry, Technische Universität Wien, 1060, Vienna, Austria.
Currently, lack of ways to engineer specific and well-defined active sites in zeolitic imidazolate frameworks (ZIFs) limits our fundamental knowledge with respect to the mechanistic details for (photo)electrocatalytic hydrogen evolution reaction (HER). Here, we introduce the open metal sites into ZIFs through the selective ligand removal (SeLiRe) strategy, comprehensively characterize the altered structural and electronic features, and evaluate their role in HER. In situ electrochemical analysis and X-ray absorption spectroscopy reveal the formation of high-valence HO-Zn-N sites through the binding of Zn-N with electrolyte hydroxide.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain.
Lithium-sulfur batteries (LSBs) are among the most promising next-generation energy storage technologies. However, a slow Li-S reaction kinetics at the LSB cathode limit their energy and power densities. To address these challenges, this study introduces an anionic-doped transition metal chalcogenide as an effective catalyst to accelerate the Li-S reaction.
View Article and Find Full Text PDF