294,331 results match your criteria: "َAmirkabir University of Technology[Affiliation]"

Semi-Supervised Medical Image Segmentation Based on Frequency Domain Aware Stable Consistency Regularization.

J Imaging Inform Med

January 2025

Key Laboratory of Knowledge Engineering with Big Data (the Ministry of Education of China), Hefei University of Technology, Hefei, 230009, Anhui, China.

With the advancement of deep learning models nowadays, they have successfully applied in the semi-supervised medical image segmentation where there are few annotated medical images and a large number of unlabeled ones. A representative approach in this regard is the semi-supervised method based on consistency regularization, which improves model training by imposing consistency constraints (perturbations) on unlabeled data. However, the perturbations in this kind of methods are often artificially designed, which may introduce biases unfavorable to the model learning in the handling of medical image segmentation.

View Article and Find Full Text PDF

Purpose: The expression of the respiratory events in OSA is influenced by different mechanisms. In particular, REM sleep can highly increase the occurrence of events in a subset of OSA patients, a condition dubbed REM-OSA (often defined as an AHI 2 times higher in REM than NREM sleep). However, a proper characterization of REM-OSA and its pathological sequelae is still inadequate, partly because of limitations in the current definitions.

View Article and Find Full Text PDF

Objective: Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with varying survival outcomes. This study investigated whether baseline PSMA PET/CT parameters are associated with survival and treatment response.

Methods: Sixty mCRPC patients underwent [F]PSMA-1007 PET/CT before treatment with androgen receptor-targeted agents (ARTAs) or chemotherapy.

View Article and Find Full Text PDF

A new method for recognizing geometric parameters of industrial robots.

Sci Rep

January 2025

Xi'an BZT Electronic Technology Co., Xi'an, China.

Intelligent algorithms that are commonly used to obtain errors in the geometric parameters of industrial robots have a low accuracy, easily fall into the local optimal solution, and involve complicated coding such that they are unsuitable for use in engineering. In this study, we first apply the D-H method to establish a model of error in industrial robots, and then use the set of errors in their geometric parameters as the objective function. Following this, we improve the accuracy of global optimization of the particle swarm optimization (PSO) algorithm by drawing on the wandering behavior of the wolf pack algorithm and hybridization behavior of the genetic algorithm.

View Article and Find Full Text PDF

Hip pain is a common musculoskeletal complaint that leads many people to seek medical attention. We conducted a primary genome-wide association study (GWAS) on the hip pain phenotype within the UK Biobank cohort. Sex-stratified GWAS analysis approach was also performed to explore sex specific variants associated with hip pain.

View Article and Find Full Text PDF

Examining the role of Acinetobacter baumannii plasmid types in disseminating antimicrobial resistance.

NPJ Antimicrob Resist

January 2024

Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia.

Acinetobacter baumannii is a Gram-negative pathogen responsible for hospital-acquired infections with high levels of antimicrobial resistance (AMR). The spread of multidrug-resistant A. baumannii strains has become a global concern.

View Article and Find Full Text PDF

Understanding the influence of stratification for mine water management: a comparative study.

Sci Rep

January 2025

South African Research Chair for Acid Mine Drainage Treatment, Tshwane University of Technology (TUT), Private Bag X680, Pretoria, 0001, South Africa.

Managing mine water in the best possible way is of great importance and depends on various factors like environmental protection, regulatory compliance and human health. To understand the complex chemical and hydrodynamic processes within the mine pool, it is critical to establish effective practices and management strategies. This study focuses on the characterisation of hydrodynamic processes affecting flooded underground mines, emphasising the importance of density stratification.

View Article and Find Full Text PDF

Research on the improvement method of imbalance of ground penetrating radar image data.

Sci Rep

January 2025

Key Laboratory of Earth Exploration and Information Techniques of Ministry of Education, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.

Ground Penetrating Radar (GPR) has been widely used to detect highway pavement structures. In recent years, deep learning techniques have achieved significant success in image recognition, which is potentially relevant for interpreting ground-penetrating radar data. This is because the various types of damage develop at different levels and in different quantities.

View Article and Find Full Text PDF

Field switching of microfabricated metamagnetic FeRh MRI contrast agents.

Sci Rep

January 2025

Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.

In a step towards generating switchable MRI cellular labels, we demonstrate in-situ field switching of micron scale metamagnetic Iron-Rhodium (FeRh) thin film particles. A thin-film (200 nm) FeRh sample was fabricated and patterned into an array of progressively smaller squares with sizes ranging from 500 μm down to 1 μm. The large first order phase change from antiferromagnetic to ferromagnetic state was characterized using vibrating sample magnetometry, magnetic force microscopy, and MRI.

View Article and Find Full Text PDF

Water quality management is a critical aspect of environmental sustainability, particularly in arid and semi-arid regions such as Iran where water scarcity is compounded by quality degradation. This study delves into the causal relationships influencing water quality, focusing on Total Dissolved Solids (TDS) as a primary indicator in the Karkheh River, southwest Iran. Utilizing a comprehensive dataset spanning 50 years (1968-2018), this research integrates Machine Learning (ML) techniques to examine correlations and infer causality among multiple parameters, including flow rate (Q), Sodium (Na), Magnesium (Mg), Calcium (Ca), Chloride (Cl), Sulfate (SO), Bicarbonates (HCO), and pH.

View Article and Find Full Text PDF

Calcareous sand is a widely used foundation material in marine engineering. Particle breakage can lead to an increase in its compressibility, affecting the safety and stability of structures. The compression characteristics and particle breakage effects of calcareous sand were analyzed through 33 sets of confined compression tests using calcareous sand specimens.

View Article and Find Full Text PDF

Controllable synthesis of nonlayered high-κ MnO single-crystal thin films for 2D electronics.

Nat Commun

January 2025

State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

Two-dimensional (2D) materials have been identified as promising candidates for future electronic devices. However, high dielectric constant (κ) materials, which can be integrated with 2D semiconductors, are still rare. Here, we report a hydrate-assisted thinning chemical vapor deposition (CVD) technique to grow manganese oxide (MnO) single crystal nanosheets, enabled by a strategy to minimize the substrate lattice mismatch and control the growth kinetics.

View Article and Find Full Text PDF

Enantioselective Heck/Tsuji-Trost reaction of flexible vinylic halides with 1,3-dienes.

Nat Commun

January 2025

College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P. R. China.

The enantioselective domino Heck/cross-coupling has emerged as a powerful tool in modern chemical synthesis for decades. Despite significant progress in relative rigid skeleton substrates, the implementation of asymmetric Heck/cross-coupling cascades of highly flexible haloalkene substrates remains a challenging and and long-standing goal. Here we report an efficient asymmetric domino Heck/Tsuji-Trost reaction of highly flexible vinylic halides with 1,3-dienes enabled by palladium catalysis.

View Article and Find Full Text PDF

Blue phosphorene, a two-dimensional, hexagonal-structured, semiconducting phosphorus, has gained attention as it is considered easier to synthesize on metal surfaces than its allotrope, black phosphorene. Recent studies report different structures of phosphorene, for example, on Cu(111), but the underlying mechanisms of their formation are not known. Here, using a combination of in situ ultrahigh vacuum low-energy electron microscopy and in vacuo scanning tunneling microscopy, we determine the time evolution of the surface structure and morphology during the deposition of phosphorus on single-crystalline Cu(111).

View Article and Find Full Text PDF

Advanced carbon-metal hybrid materials with controllable electronic and optical properties, as well as chemical reactivities, have attracted significant attention for emerging applications, including energy conversion and storage, catalysis and environmental protection. However, the commercialization of these materials is hampered by several vital problems, including energy-intensive synthesis and expensive chemicals, and inefficient control of their structures and properties. Herein, we report the simple and controllable engineering of nanocarbon-metal self-assembled silver nanocatalysts (SSNs) derived from polycarbonate (PC)-based optical discs using microplasmas under ambient conditions.

View Article and Find Full Text PDF

Monitoring and optimization of the microenvironment in a gravity-driven microfluidic system placed on a slow-tilting table.

J Biosci Bioeng

January 2025

Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, Niigata, 940-2188 Japan. Electronic address:

Gravity-driven microfluidic chips offer portability and flexibility in different settings because pumps and connecting tubes are unnecessary for driving fluid flow. In a previous study, human induced pluripotent stem cells were cultured using gravity-driven microfluidics, with the liquid flow rate regulated by a tilting table. However, instability in cell culture has been observed, occasionally leading to cell death owing to unknown causes.

View Article and Find Full Text PDF

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy).

View Article and Find Full Text PDF

Detecting trace amounts of aflatoxin B (AFB), one of the most toxic food contaminants, is crucial for efficiently preventing potential health risks. Circular aptamers are promising candidates for bioanalytical applications due to their enhanced biological and structural stability as well as their compatibility with rolling circle amplification (RCA). Herein, we employed a high-efficiency magnetic chain graphene oxide-based SELEX to generate circular aptamers that bind AFB with high affinity and selectivity.

View Article and Find Full Text PDF

High-consistency modification of cellulose fibers: Resource-efficient introduction of cationic charges, and their effect on fiber and nanofibril properties.

Carbohydr Polym

March 2025

Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:

Quaternized cellulose fibers and cellulose nanofibrils (CNFs) are attractive candidates for the development of new renewable and biodegradable materials. However, the etherification reaction, through which functionalization is commonly achieved, provides low efficiencies, limiting industrial interest in the modification. This work primarily aims to increase the efficiency for the quaternization of cellulosic fibers while keeping the fiber-structure intact.

View Article and Find Full Text PDF

The reduction in hyaluronic acid concentration and viscosity in the synovial fluid of patients struggling with osteoarthritis increases the abrasion of articular cartilage. The aim of this study was to design a semi-IPN hydrogel based on genipin-crosslinked carboxymethyl chitosan (CMCh) and glycerol to achieve long-term release of hyaluronic acid. The results showed that hydrogel comprising CMCh (3 % wt.

View Article and Find Full Text PDF

The study involves the modification of a non-conventional starch isolated from the under-utilized variety of Chinese water chestnut (CWC (Eleocharis tuberosa) and integrating it to fabricate stabilized and curcumin-enriched Pickering emulsions with enhanced bioavailability, thermal stability, and retention of encapsulated curcumin. A time-efficient, semi-dried esterification method was used to prepare modified amphiphilic starches using 3, 6, or 9 % (w/v) octenyl succinic anhydride (OSA) and characterized through degree of substitution (DS), contact angle, particle size, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in-vitro digestibility. Moreover, Pickering emulsions were formulated using CWCS-OSA at 3 %, 6 %, or 9 % concentrations to serve as a carrier for curcumin to improve its water solubility and storage stability.

View Article and Find Full Text PDF

Non-destructive prediction and pixel-level visualization of polysaccharide-based properties in ancient paper using SWNIR hyperspectral imaging and machine learning.

Carbohydr Polym

March 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China.

Ancient documents and artworks are invaluable cultural heritage artworks that require careful preservation. Traditional methods for assessing their physical and chemical properties-such as tearing index, tensile index, water absorption, and pH-are often destructive, risking irreversible damage. This study introduces a novel, non-destructive approach using Short-Wave Near-Infrared (SWNIR) hyperspectral imaging (HSI) combined with advanced machine learning models.

View Article and Find Full Text PDF

This study introduces a novel bilayer wound dressing that integrates a quaternized chitosan-polyacrylic acid (QCs-PAA) sponge as the top layer with electrospun nanofibers containing curcumin as the bottom layer. For the first time, QCs and PAA were combined in an 80:20 ratio through freeze-drying to form a porous sponge layer with ideal structural properties, including 83 ± 6 % porosity and pore diameters of 290 ± 12.5 μm.

View Article and Find Full Text PDF

Konjac glucomannan-based foams incorporating cellulose phase change microcapsules for efficient thermal energy regulation.

Carbohydr Polym

March 2025

Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:

Biomass foam with porous structure has broad application prospects in thermal energy management. However, traditional foams can only passively insulate heat, unable to effectively store thermal energy and prolong the insulation time. In this work, microcapsules rich in paraffin were prepared using the Pickering emulsion template method with phosphorylated cellulose nanocrystals (CNC) as an emulsifier.

View Article and Find Full Text PDF

High-speed atomic force microscopy reveals opposite traffic of processive chitinases impairs α-chitin biodegradation.

Carbohydr Polym

March 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:

The antiparallelly organized α-chitin exhibits greater thermodynamic stability and is more recalcitrant to degradation than its parallel allomorph, β-chitin, thereby impeding the efficient utilization of this natural resource. The processive chitinases usually provide the majority of catalytic potential for chitin biodegradation. Using high-speed atomic force microscopy (HS-AFM), we revealed that the opposite traffic of OfChi-h, the only processive chitinase involved in chitin biodegradation in the insect Ostrinia furnacalis, is a key factor that significantly affects α-chitin degradation.

View Article and Find Full Text PDF